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Abstract
The objective of this vignette is to provide an example to use SoilR s

possibilities to interface with package FME in order to estimate parameters
of soil models using real data. To this end we set us the following task. We
assume an experiment yielding a combination of 14C and C data. Our
objective is to find a mathematical model for the decomposition of soil
organic matter which has to fulfill the following requirements.

1. It can reproduce the data.

2. Its parameters can be determined by the data with sufficient accu-
racy.

We will not explain FME functionality here but strongly recommend to
read the excellent vignette for package FME . Instead we focus on the
application to SoilR models. It is however not necessary to read any
other SoilR vignette before this one.

1 The data

Assume the following data having been measured.

1. The over all respiration 14C/C ratio at some few points in time

2. Time series of the C concentration of two pools

3. Time series of the sum of the C input rates of to the two pools

4. A time series of the atmospheric 14C/C fraction

The example data are provided as part of the package the SoilR . Un-
commenting the following code shows all datasets that come with the
package.

> #library(SoilR)

> #data(package="SoilR")

We load the following:

> data(CourseExample_R14)

> data(C14Atm_NH)

The following code to plot the data is part of the example belonging to
the help of this dataset.
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> library(ggplot2)

> data(CourseExample_R14)

> lty1=1

> lty2=2

> c1="pool 1"

> c2="pool 2"

> yl=max(DataC[,"C1"],DataC[,"C2"])

> ym=min(DataC[,"C1"],DataC[,"C2"])

> p <- ggplot(data.frame(DataC))

> p <- p+geom_point(aes(x=time,y=C1,col=c1))

> p <- p+geom_errorbar(aes(x=time,ymin=C1-sd,ymax=C1+sd,col=c1))

> p <- p+geom_point(aes(x=time,y=C2,col=c2))

> p <- p+geom_errorbar(aes(x=time,ymin=C2-sd,ymax=C2+sd,col=c2))

> p <- p+scale_y_continuous(name="C content of the pools")

> p <- p+opts(legend.title=theme_blank())

> p
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> yl=max(DataR14[,"R14t"])

> ym=min(DataR14[,"R14t"])

> limits<- aes(ymax = R14t + sd, ymin=R14t - sd)

> p <- ggplot(data.frame(DataR14), aes(colour=c(1), y=R14t, x=time))

> p <- p + geom_point() + geom_errorbar(limits, width=0.2)

> p <- p + geom_pointrange(limits)

> p <- p+scale_y_continuous(name="14C fraction of the Respiration")

> p <- p + opts(legend.title=theme_blank())

> p
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> p <- ggplot(DataI)

> p <- p+geom_point(aes(x=time,y=In,col="inputrate "))

> p <- p+scale_y_continuous(name="sum of input/y")

> p <- p+opts(legend.title=theme_blank())

> p
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> p <- ggplot(C14Atm_NH)

> p <- p+geom_point(aes(x=YEAR,y=Atmosphere,col="14C/C"))

> p <- p+scale_y_continuous(name="atmospheric 14C fraction")

> p <- p+opts(legend.title=theme_blank())

> p
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2 Available Models

SoilR provides a very general approach to models for Soil organic matter
decomposition and can therefore be used for a wide range of different
models. Many - especially those that are frequently used in the literature
- have been implemented on top of the general framework making them
even easier to use. To see what is in the package uncomment the following:

> #?Models

Which will show up all the currently available functions for the construc-
tion of models. In our case we look for those which start with Twop..

which abbreviates two pool and end with ..14 which marks the 14C model
constructors but also may consider more general cases. The candidates
thus are:

1. TwopParallelModel14

2. TwopSeriesModel14

3. TwopFeedbackModel14

4. GeneralModel14

A priori all these could be able to reproduce the data, which is our first
request. A closer look at the help pages of these candidates reveals that the
number of parameters to choose increases from top to bottom. Thus the
difficulty to constrain the parameters will increase also. It is convenient
to start with the twopParallelModel14 and assume only the two decay
constants of the pools as variable parameters. As we proceed we can allow
more parameters to be varied to model the given data better.

3 Synthesis

Our first aim is to reproduce a synthetic dataset as function of the param-
eters to be determined. In a second step we have to provide a measure
for the misfit between the synthetically produced data and the real data,
which will be computed by a cost function. Then we have to try different
combinations of the free parameters in order to minimize the cost. The
FME package will be very useful for steps two and three, while we will use
SoilR for the first step: A look at the help page of twopParallelModel14
shows which arguments we have to provide. We start with those that we
consider fixed.

• We begin with the times where we want to compute the solution.
Since we want to compare the output to the real data later it is
sensible to compute values at least for the times given in our dataset.

> library("SoilR")

> library("FME")

> t_start=1978

> t_end=2008

> #t_start=t_end-30

> indices=(C14Atm_NH$YEAR>=t_start & C14Atm_NH$YEAR < t_end)

> time=C14Atm_NH$YEAR[indices]

• We proceed with the initial values. which we can extract them from
the data.

> C0=as.numeric(DataC[1,c("C1","C2")])

[1] 0.5828128 0.6164349
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• The next item is the inputrate which is part of the data set and can
be passed directly.

• Parameter γ will is regarded as constant.

> gam=0.6

• ξ could be used to describe the influence of temperature and moisture
as function of time on the decomposition but is regarded constant
in this case.

> xi=1

• C14Atm NH can be used directly as an argument for the parameter
FcAtm.

• To show that we use the decay constant for 14C the unit compatible
with our time unit we compute it here from the half-live given in
years. SoilR would use the same value as default, so this prepara-
tion is really needed only if you decide to use another unit for time
measurement.

> th=5730

[1] 5730

> #note that k_14 is negative and has the unit y^-1

> k_14=log(0.5)/th

[1] -0.0001209681

The remaining part of the model construction we wrap into a function
that depends on the unknown parameters k1 and k2 and the mysterious
parameter pass only. The pass argument requires some explanation. It
only makes sense in view of the future use of our small function with FME

. The reason is this: If you create a model in SoilR the package will by
default execute an number of tests on the given arguments to prevent
the unintentional creation of models that are biologically not meaningful.
Unfortunately FME s abstract algorithms do not care about biologically
meaningful parameter combinations and would cause SoilR to exit with
an error if by chance such a combination occurs. It might for instance
happen that during the fitting procedure FME tries a positive k to fit the
data, which would mean creation of organic matter instead of decomposi-
tion. The interface of modFit provides only one possibility to avoid this
situation by setting appropriate upper and lower bounds for parameters.
This would do the job with this simple example but not for all cases.
For those cases only we introduce the pass facility used as a last resort to
switch off the checking at model creation. If we do so we have to check the
estimated parameters afterwards without this flag. We will do so at the
end of this example. For the moment note, that we allow for an additional
argument to turn of the internal checking by setting pass=TRUE.

> pf<-function(ks,pass=FALSE){

+ mod=TwopParallelModel14(

+ time,

+ ks,

+ C0,

+ In=DataI,

+ gam=gam,

+ xi=xi,

+ FcAtm=C14Atm_NH,

+ lambda=k_14,
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+ pass=pass

+ )

+ Cs=getC(mod)

+ R14t=getTotalReleaseFluxC14CRatio(mod)

+ return(data.frame(time=time,R14t=R14t,C1=Cs[,1],C2=Cs[,2]))

+ }

We produce a dataset arbitrarily chosen parameters k1 and k2 and plot
it together with the data:

To give FME a tool to measure the quality of a parameter combination
we a cost function that weights the error. Since in this example we deal
with two different kinds of data which firstly have different units and
secondly have a different number of data points we have to invest some
time for thought here.

1. We apply FME s modCost twice, the first time on data arguments
only but the second time with the additional argument of the first
cost function. This expresses the fact that we treat errors of different
observables differently.

2. The weighing is done by dividing the residuals by the error which is
done for two reasons firstly to get a dimensionless result and secondly
to reduce the influence of uncertain values. The errors are assumed
to be in column with name ”sd” of the measured dataset.

3. We could suppress the domination of the one value for 14C/C ratio
by the more frequent C measurements by rescaling the cost according
to the number of data points, which could be done with the scaleVar
argument.

Since we now have a measure for the cost we can use a lot of FME

functionality e.g. determine how sensitive this cost is to changes in our
parameters, which helps us to detect unidentifiable parameters. To do so
we create the sensitivity functions. We also can estimate the approximate
linear dependence (collinearity) of the two parameters which reveals pa-
rameters that have similar effect on the output and are hard to identify
simultaneously. All this is FME functionality an described in much more
detail by FME s vignettes.

We can estimate the collinearity explicitly:

> ident <- collin(Sfun,parset=c("k1","k2"))

k1 k2 N collinearity

1 1 1 2 1

Finally we fit the parameter to the data. Before we do so we always
have to think about how to prevent the creation of invalid models. The
only way provided by modFit is to constrain parameter ranges by upper
and lower bounds. If this will constrain FME ’s guesses to the reasonable
parameter values depends on our cleverness in choosing the right param-
eter set to be estimated but is sometimes not possible. However to give
the FME algorithms the freedom to (temporarily) test even (biologically)
unreasonable values we deliberately disabled SoilR ’s checks during the
creation of models in the cost function. To demonstrate that with pass

set to true the parameter estimation works even for biologically meaning-
less parameters we deliberately choose a positive start value for one of the
decay constants and also a to large parameter range to include this value.
(For a valid model both decay constants would have to be smaller than
zero since positive values do not refer to decomposition but ”growth”.)
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We compare the fitted curve to the curve resulting from the values that
were used to create the example dataset in the first place. To this end
we create again the model with the estimated parameter values, this time
without the pass argument to use SoilR ’s checks. So we are sure that
the best numerical Fit is also biologically possible. Usually we are not
only interested in the best fitting parameters, but rather in the distribu-
tion of the parameters. We can estimate it with a Monte Carlo Markov
Chain method witch is also part of FME. Once again we refer to the FME

vignette for details.
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> pars=c(k1=-0.1,k2=-0.2)

> Df=pf(pars)

> c1="black"; c2="red";lty1=1;lty2=1

> plot(DataC[,"time"],

+ DataC[,"C1"],

+ col=c1,lty=lty1,

+ xlab="time",

+ ylab="C content of the pools"

+ )

> points(

+ DataC[,"time"],

+ DataC[,"C2"],

+ col=c2,

+ lty=lty2

+ )

> lines(Df$time,Df$C1,col=c1,lty=lty1)

> lines(Df$time,Df$C2,col=c2,lty=lty2)

> legend(x=1950,

+ y=0.3,

+ legend=c("C content of pool 1","C content of pool 2"),

+ bg="white",

+ col=c(c1,c2),lty=c(lty1,lty2))
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Figure 1: The output for the C stock of a model with arbitrarily chosen param-
eters k1 and k2 together with the (measured) data
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> plot(DataR14[,"time"],DataR14[,"R14t"],lty=1,col=c1)

> lines(Df$time,Df$R14t,col=c1,lty=lty1)
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Figure 2: The output for the 14C fraction of the respiration of a model with
arbitrarily chosen parameters k1 and k2 together with the (measured) data
.
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> DfCost <- function(pars){

+ Df <- pf(pars,pass=TRUE)

+ Ccost=modCost(

+ model=Df,

+ obs=DataC,

+ err="sd"

+ #,scaleVar=TRUE

+ )

+ return(

+ modCost(

+ model=Df,

+ obs=DataR14,

+ err="sd",

+ #,scaleVar=TRUE

+ cost=Ccost)

+ )

+ }

> plot(DfCost(pars),xlab="time")
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Figure 3: The (error) weighted residuals.
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> Sfun <- sensFun(DfCost,pars)

> summary(Sfun)

value scale L1 L2 Mean Min Max N

k1 -0.1 -0.1 0.31 0.12 -0.31 -1.0 0 20

k2 -0.2 -0.2 0.42 0.16 -0.42 -1.4 0 20

> plot(Sfun,which=c("R14t","C1","C2"),xlab="time",lwd=2)
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Figure 4: The plot shows the the sensitivity functions of all three observables
on both parameters. The result is an extreme case and shows that in a parallel
model the C stock of pool 1 does not depend on k2 and vice versa, while the
overall respiration naturally depends on both variables
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> pairs(Sfun,which=c("R14t","C1","C2"),col=c("green","blue","red"))
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Figure 5: The pairs plot summarizes the dependency of the sensitivity function
of all three observables on both parameters. It would also reveal collinearity if
the points of different colors were showing a similar pattern which they fortu-
nately do not in this example. The alignment of the blue and red clouds to the
axis expresses the same lesson that we learnt from the plot of the sensitivity
functions: In a parallel model the C stock of pool 1 does not depend on k2 and
vice versa
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> Fit <- modFit(f=DfCost,upper=c(0.2,0),p=c(0.1,-0.1))

> print(Fit$par)

[1] 0.1999981 -0.6283194

> plot(Fit)

> summary(Fit)

Parameters:

Estimate Std. Error t value Pr(>|t|)

[1,] 0.20000 0.04735 4.224 0.00051 ***

[2,] -0.62832 0.07376 -8.519 9.91e-08 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 1.329 on 18 degrees of freedom

Parameter correlation:

[,1] [,2]

[1,] 1.0000 -0.0758

[2,] -0.0758 1.0000
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Figure 6: The plot shows how the residuals have been minimized by the fitting
procedure and can be used to inspect convergence of the algorithm
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> #pars=c(k1=-0.6,k2=-0.2)

> Dfinal=pf(Fit$par)

> plot(Df$time,Df$C1,type="l",lty=lty1,

+ ylim=c(min(Df[,c("C1","C2")]),max(Df[,c("C1","C2")])),

+ col=c1)

> lines(Df$time,Df$C2,lty=lty1,col=c2)

> lines(Dfinal$time,Dfinal$C1,lty=lty2,col=c1)

> lines(Dfinal$time,Dfinal$C2,lty=lty2,col=c2)
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> plot(Df$time,Df$R14t,type="l",lty=lty1,col=c1)

> lines(Dfinal$time,Dfinal$R14t,lty=lty2,col=c2)
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> #var0 <- Fit$var_ms_unweighted

> #cov0 <- summary(Fit)$cov.scaled#*2.4^2/5

> #p=Fit$par

> niter=500

> t1=Sys.time()

> MCMC <- modMCMC(f=DfCost,niter=niter,p=Fit$par)

number of accepted runs: 458 out of 500 (91.6%)

> t2=Sys.time()

> print(t1-t2)

Time difference of -1.256627 mins

> summary(MCMC)

p1 p2

mean 0.32002030 -0.6395713

sd 0.08780541 0.2060237

min 0.18319084 -1.4267987

max 0.59000862 -0.2793101

q025 0.25424901 -0.7834914

q050 0.30290060 -0.6016508

q075 0.35131724 -0.4847100

> plot(MCMC, Full = TRUE)
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Figure 7: The plot shows the accepted values for each parameter. It can be
used to identify situations where there is doubt if the collected values represent
the equilibrium distribution of the chain
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> sR=sensRange(func=pf, parInput=MCMC$par)

> plot(summary(sR)

+ ,xlab="Years"

+ )
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Figure 8: The plot shows the range for the model output based on the estimated
distribution of the parameters
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> pairs(MCMC, nsample = niter/4)
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Figure 9: This plot is the analogon of the pairs plot for the sensitivity
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