
Some interesting graphics

Zuguang Gu <z.gu@dkfz.de>

August 3, 2013

We would show you how to use circlize package to draw some rather interesting graphcis.
The first one is a clock. The key function here is circos.axis (figure 1). The whole circle only

contains one sector in which major tick at 0 is overlapping with major tick at 12. The two arrows are
drawn in the canvas coordinate. An example of the real-time clock is in the Examples section of the help
page of circos.axis.

> library(circlize)

> factors = letters[1]

> par(mar = c(1, 1, 1, 1))

> circos.par("gap.degree" = 0, "cell.padding" = c(0, 0, 0, 0), "start.degree" = 90)

> circos.initialize(factors = factors, xlim = c(0, 12))

> circos.trackPlotRegion(factors = factors, ylim = c(0, 1), bg.border = NA)

> circos.axis(sector.index = "a", major.at = 0:12, labels = "",

+ direction = "inside", labels.cex = 1.5, major.tick.percentage = 0.3)

> circos.text(1:12, rep(0.5, 12), 1:12, direction = "horizontal")

> arrows(0, 0, 0, 0.7)

> arrows(0, 0, 0.4, 0)

> circos.clear()

The second example is a dartboard. In the figure, tracks are assigned with different height and each
cell is initialized with different colors (figure 2). The most inside green ring and red circle are drawn by
draw.sector.

> library(circlize)

> factors = 1:20

> par(mar = c(1, 1, 1, 1))

> circos.par("gap.degree" = 0, "cell.padding" = c(0, 0, 0, 0),

+ start.degree = 360/40, track.margin = c(0, 0), "clock.wise" = FALSE)

> circos.initialize(factors = factors, xlim = c(0, 1))

> circos.trackPlotRegion(ylim = c(0, 1), factors = factors, bg.col = "black",

+ track.height = 0.15)

> circos.trackText(rep(0.5, 20), rep(0.5, 20),

+ labels = c(13, 4, 18, 1, 20, 5, 12, 9, 14, 11, 8, 16, 7, 19, 3, 17, 2, 15, 10, 6),

+ factors = factors, col = "#EEEEEE", font = 2,

+ direction = "horizontal")

> circos.trackPlotRegion(ylim = c(0, 1), factors = factors,

+ bg.col = rep(c("#E41A1C", "#4DAF4A"), 10), bg.border = "#EEEEEE",

+ track.height = 0.05)

> circos.trackPlotRegion(ylim = c(0, 1), factors = factors,

+ bg.col = rep(c("black", "white"), 10), bg.border = "#EEEEEE",

+ track.height = 0.275)

> circos.trackPlotRegion(ylim = c(0, 1), factors = factors,

+ bg.col = rep(c("#E41A1C", "#4DAF4A"), 10), bg.border = "#EEEEEE",

+ track.height = 0.05)

> circos.trackPlotRegion(ylim = c(0, 1), factors = factors,

+ bg.col = rep(c("black", "white"), 10), bg.border = "#EEEEEE",

+ track.height = 0.375)

> draw.sector(center = c(0, 0), start.degree = 0, end.degree = 360,

1



1

2

3

4

5

6

7

8

9

10

11

12

Figure 1: A clock

+ rou1 = 0.1, col = "#4DAF4A", border = "#EEEEEE")

> draw.sector(center = c(0, 0), start.degree = 0, end.degree = 360,

+ rou1 = 0.05, col = "#E41A1C", border = "#EEEEEE")

> circos.clear()

The third example is Ba-gua (https://en.wikipedia.org/wiki/Ba_gua). The key functions are
circos.rect and draw.sector (figure 3).

Ba-gua origined about several thousands years ago in China. It is the source of almost all ancient
Chinese philosophy. It abstracts the rule of universe into base signs (i.e. - - which is called Yang and -

which is called Ying). And combination of the two basic signs generates the whole system of the universe.
Inside Ba-gua, these is the Tai-ji. Tai-ji refers to the most original state at the creation of the

universe. In ancient Chinese philosophy system, at the very beginning, the whole world is a huge mass
of air (chaos). Then the lighter air floated up and created sky while heavier air sinked down and created
ground. The upper world is called Yang and the bottom world is called Ying. And that is Tai-ji.

So look at Tai-ji, you can see there are two states interacting with each other. The white one and
the black one gradually transformed into each other at the end. In real world, Tai-ji can represent all
phenomenon that is of dualism. Such as male and female, correct and wrong. However things would
change, good thing would become bad thing as time goes by, and bad thing also would turn good
according how you look at the world. So when you are upset, dont’t worry, Tai-ji would tell you that
things are going to be fine.

> library(circlize)

> factors = letters[1:8]

> par(mar = c(1, 1, 1, 1))

> circos.par("default.track.height" = 0.15, "start.degree" = 22.5, "gap.degree" = 6)

> circos.initialize(factors = factors, xlim = c(0, 1))

> circos.trackPlotRegion(ylim = c(0, 1), factors = factors, bg.border = NA,

+ panel.fun = function(x, y) {

2

https://en.wikipedia.org/wiki/Ba_gua


13

4

18

1
20

5

12

9

14

11

8

16

7

19
3

17

2

15

10

6

Figure 2: A dartboard

+ i = get.cell.meta.data("sector.numeric.index")

+ if(i %in% c(2, 5, 7, 8)) {

+ circos.rect(0,0,1,1, col = "black")

+ } else {

+ circos.rect(0,0,0.45,1, col = "black")

+ circos.rect(0.55,0,1,1, col = "black")

+ }

+ })

> circos.trackPlotRegion(ylim = c(0, 1), factors = factors, bg.border = NA,

+ panel.fun = function(x, y, ...) {

+ i = get.cell.meta.data("sector.numeric.index")

+ if(i %in% c(1, 6, 7, 8)) {

+ circos.rect(0,0,1,1, col = "black")

+ } else {

+ circos.rect(0,0,0.45,1, col = "black")

+ circos.rect(0.55,0,1,1, col = "black")

+ }

+ })

> circos.trackPlotRegion(ylim = c(0, 1), factors = factors, bg.border = NA,

+ panel.fun = function(x, y, ...) {

+ i = get.cell.meta.data("sector.numeric.index")

+ if(i %in% c(4, 5, 6, 7)) {

+ circos.rect(0,0,1,1, col = "black")

+ } else {

+ circos.rect(0,0,0.45,1, col = "black")

+ circos.rect(0.55,0,1,1, col = "black")

+ }

3



+ })

> # draw taiji

> draw.sector(center = c(0, 0), start.degree = -90, end.degree = 90,

+ rou1 = 0.4, col = "black", border = "black")

> draw.sector(center = c(0, 0), start.degree = 90, end.degree = 270,

+ rou1 = 0.4, col = "white", border = "black")

> draw.sector(center = c(0, 0.2), start.degree = 0, end.degree = 360,

+ rou1 = 0.2, col = "white", border = "white")

> draw.sector(center = c(0, -0.2), start.degree = 0, end.degree = 360,

+ rou1 = 0.2, col = "black", border = "black")

> draw.sector(center = c(0, 0.2), start.degree = 0, end.degree = 360,

+ rou1 = 0.05, col = "black", border = "black")

> draw.sector(center = c(0, -0.2), start.degree = 0, end.degree = 360,

+ rou1 = 0.05, col = "white", border = "white")

> circos.clear()

Figure 3: A Ba-gua

Figure 4 is a circular layout of Keith Haring’s doodles. The circular transformation is as follows: 1.
use jpeg package to read RGB information for each pixel in the figure; 2. use circos.rect to draw
every pixel into the circle. Source code for generating the figure can be found in the demo code of the
package.

4



Figure 4: Keith Haring’s Doodle

5


