R documentation
of all in ‘man’
December 22, 2007

R topics documented:

Getting.Started . . . . .. 2
ANOVALTZIMN . v v v v v v v e e e e e e e e e e e e e e e e e e e e e 3
as.network.numeric . . . . . ... 4
coeflergm . . . ..o 6
statnet-internal . . . .. ... 7
ergm-package . . . . ... 7
EIEM-TEIINS . .« . v v v v e e e e e e e e e e e e e e e e e e e e e e 8
134 1 AP 19
ergm.Control . . . . . . . L 26
ergmuserterms-package . . . . .. ...l 29
faux.magnolia.high . . . . . . ... . .. 30
faux.mesa.high . . . . . . . ... 32
flobusiness . . . . . . .. 33
flomarriage . . . . . ... 34
florentine . . . . . . ... 35
B 36
gofiergm.control . . . ... e 37
goflergm . . . . .o e e 38
meme.diagnoStiCS.eTZM . . . . . . L. e e e e e e e e e e e e e e 40
molecule . . . . . .. e 43
network.update . . . ... . Ll 43
plotergm . . . ... 44
plot.gofobject . . . . . . . e e e e 47
plotnetwork.statnet . . . . . . . .. .. e e e e e e e 48
PriNtergImM . . . . . . . . L e e e 53
samplk . . . oL e 54
SAMPSON . o v v v v i e e e e e e e e e e e e e e e e e 55
simulate.ergm . . . . . ... e e 56
simulate.ergm.control . . . . . ... L. L e 59
SUMMATY.IZM .« . . o v v v e ettt e e e e e e e e e e e 60
summary.gofobject . . . .. .. L 61
SUMMAry.StatiStics . . . . . . . oo e e e e e 62



2 Getting.Started

Index 64
Getting.Started Getting Started with "ergm": Statistical Modeling of Network and
Graph Data
Description

ergm is a collection of functions to plot, fit, diagnose, and simulate from random graph models.
For a list of functions type: help(package="ergm’)

For a complete list of the functions, use 1ibrary (help="ergm") orread the rest of the manual.
For a simple demonstration, use demo (packages="ergm").

When publishing results obtained using this package the original authors are to be cited as:

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris.
2003 ergm: An R package for the Statistical Modeling of Social Networks
http://www.csde.washington.edu/statnet.

All programs derived from this package must cite it. For complete citation information, use
citation (package="ergm").

Details

Recent advances in the statistical modeling of random networks have had an impact on the empirical
study of social networks. Statistical exponential family models (Strauss and Ikeda 1990) are a gen-
eralization of the Markov random network models introduced by Frank and Strauss (1986), which
in turn derived from developments in spatial statistics (Besag, 1974). These models recognize the
complex dependencies within relational data structures. To date, the use of stochastic network mod-
els for networks has been limited by three interrelated factors: the complexity of realistic models,
the lack of simulation tools for inference and validation, and a poor understanding of the inferential
properties of nontrivial models.

This manual introduces software tools for the representation, visualization, and analysis of network
data that address each of these previous shortcomings. The package relies on the net work package
which allows networks to be represented in R. The ergm package allows maximum likelihood
estimates of exponential random network models to be calculated using Markov Chain Monte Carlo.
The package also provides tools for plotting networks, simulating networks and assessing model
goodness-of-fit.

For detailed information on how to download and install the software, go to the ergm website:
http://www.csde.washington.edu/statnet. A tutorial, support newsgroup, references
and links to further resources are provided there.

Author(s)

Mark S. Handcock (handcock @stat.washington.edu),
David R. Hunter (dhunter @stat.psu.edu),

Carter T. Butts (buttsc@uci.edu),

Steven M. Goodreau (goodreau@u.washington.edu), and
Martina Morris (morrism @u.washington.edu)

Maintainer: Mark S. Handcock (handcock @stat.washington.edu)


http://www.csde.washington.edu/statnet
http://www.csde.washington.edu/statnet

anova.ergm 3

References
Besag, J., 1974, Spatial interaction and the statistical analysis of lattice systems (with discussion),
Journal of the Royal Statistical Society, B, 36, 192-236.

Frank, O., and Strauss, D.(1986). Markov graphs. Journal of the American Statistical Association,
81, 832-842.

Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M., and Morris, M. (2003), statnet: An
R package for the Statistical Modeling of Social Networks.,
URL http://www.csde.washington.edu/statnet

Strauss, D., and Ikeda, M.(1990). Pseudolikelihood estimation for social networks. Journal of the
American Statistical Association, 85, 204-212.

anova.ergm ANOVA for Linear Model Fits

Description

Compute an analysis of variance table for one or more linear model fits.

Usage

## S3 method for class 'ergm':
anova (object, ...)

anova.ergmlist (object, ..., scale = 0, test = "F")
Arguments
object, ... objectsof class ergm, usually, a result of a call to ergm.
test a character string specifying the test statistic to be used. Can be one of "F",

"Chisg" or "Cp", with partial matching allowed, or NULL for no test.

scale numeric. An estimate of the noise variance o2. If zero this will be estimated
from the largest model considered.

Details

Specifying a single object gives a sequential analysis of variance table for that fit. That is, the
reductions in the residual sum of squares as each term of the formula is added in turn are given in
the rows of a table, plus the residual sum of squares.

The table will contain F statistics (and P values) comparing the mean square for the row to the
residual mean square.

If more than one object is specified, the table has a row for the residual degrees of freedom and sum
of squares for each model. For all but the first model, the change in degrees of freedom and sum of
squares is also given. (This only make statistical sense if the models are nested.) It is conventional
to list the models from smallest to largest, but this is up to the user.


http://www.csde.washington.edu/statnet

4 as.network.numeric

Optionally the table can include test statistics. Normally the F statistic is most appropriate, which
compares the mean square for a row to the residual sum of squares for the largest model considered.
If scale is specified chi-squared tests can be used. Mallows’ C), statistic is the residual sum of
squares plus twice the estimate of o2 times the residual degrees of freedom.

Value

An object of class "anova" inheriting from class "data.frame".

Warning

The comparison between two or more models will only be valid if they are fitted to the same dataset.
This may be a problem if there are missing values and R’s default of na.action = na.omit
is used, and anova.ergmlist will detect this with an error.

See Also

The model fitting function ergm, anova.

Examples

data (molecule)

molecule %v% "atomic type" <- c¢(1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3)

fit0 <- ergm(molecule ~ edges)

anova (fit0)

fitl <- ergm(molecule ~ edges + nodefactor ("atomic type"))

anova (fitl)

fit2 <- ergm(molecule ~ edges + nodefactor ("atomic type") + gwesp (0.5, fixed=TRUE))
anova (fit0, fit1l)

anova (fit0, fitl, fit2)

as.network.numeric Create a Simple Random network of a Given Size

Description

as.network.numeric creates a random Bernoulli network of the given size as an object of
class network.

Usage

as.network.numeric(x, directed = TRUE,
hyper = FALSE, loops = FALSE, multiple = FALSE, bipartite = FALSE,
ignore.eval = TRUE, names.eval = NULL,
edge.check = FALSE,
density=NULL, theta0=NULL, numedges=NULL, ...)



as.network.numeric

Arguments

X

directed
hyper
loops
multiple
bipartite

ignore.eval

names.eval

edge.check
density

thetal

numedges

Details

count; the number of nodes in the network. If bipartite=TRUE, it is the
number of events in the network.

logical; should edges be interpreted as directed?

logical; are hyperedges allowed? Currently ignored.
logical; should loops be allowed? Currently ignored.
logical; are multiplex edges allowed? Currently ignored.

count; should the network be interpreted as bipartite? If present (i.e., non-
NULL) it is the count of the number of actors in the bipartite network. In this
case, the number of nodes is equal to the number of actors plus the number of
events (with all actors preceding all events). The edges are then interpreted as
nondirected.

logical; ignore edge values? Currently ignored.

optionally, the name of the attribute in which edge values should be stored. Cur-
rently ignored.

logical; perform consistency checks on new edges?

numeric; the probability of a tie for Bernoulli networks. If neither density nor
thetaO are given, it defaults to the number of nodes divided by the number of
dyads (so the expected number of ties is the same as the number of nodes.)

numeric; the log-odds of a tie for Bernoulli networks. It is only used if density
is not specified.

count; if present, sample the Bernoulli network conditional on this number of
edges (rather than independently with the specified probability).

additional arguments

The network will have not have vertex, edge or network attributes. These can be added with opera-

tors such as $v%,

Value

o

(o [ [
n%, 5e%.

An object of class network

Author(s)

Carter T. Butts (buttsc@uci.edu) and Mark S. Handcock (handcock @stat.washington.edu)

References

Butts, C.T. 2002. “Memory Structures for Relational Data in R: Classes and Interfaces” Working

Paper.

See Also

network



6 coef.ergm

Examples

#Draw a random directed network with 25 nodes

g<-network (25)

#Draw a random undirected network with density 0.1

g<-network (25, directed=FALSE, density=0.1)

#Draw a random bipartite network with 10 events and 5 actors and density 0.1
g<-network (5, bipartite=10, density=0.1)

coef.ergm Extract Model Coefficients

Description

coef is a Method which extracts model coefficients from objects returned by the e rgm function.
coefficients is an alias for it.

Usage
## S3 method for class 'ergm':
coef (object, ...)
#4 S3 method for class 'ergm':
coefficients (object, ...)
Arguments
object an object for which the extraction of model coefficients is meaningful.

other arguments.

Value

Coefficients extracted from the model object object.

See Also

fitted.values and residuals for related methods; glm, 1m for model fitting.

Examples

data (molecule)

molecule %v% "atomic type" <- c¢(1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3)
fit <- ergm(molecule ~ edges + nodefactor ("atomic type"))

coef (fit)



statnet-internal 7

statnet-internal Internal statnet Objects

Description

Internal ergm functions.

Details

Most of these are not to be called by the user (or in some cases are just waiting for proper docu-
mentation to be written :).

See Also

ergm, statnet-package

ergm-package Statistical Modeling of Network and Graph Data

Description

ergm is a collection of functions to plot, fit, diagnose, and simulate from random graph models.
For a list of functions type: help(package="ergm’)

For a complete list of the functions, use 1ibrary (help="ergm") orread the rest of the manual.
For a simple demonstration, use demo (packages="ergm").

When publishing results obtained using this package the original authors are to be cited as:

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris.
2003 statnet: An R package for the Statistical Modeling of Social Networks
http://www.csde.washington.edu/statnet.

All programs derived from this package must cite it. For complete citation information, use
citation (package="ergm").

Details

Recent advances in the statistical modeling of random networks have had an impact on the empirical
study of social networks. Statistical exponential family models (Strauss and Ikeda 1990) are a gen-
eralization of the Markov random network models introduced by Frank and Strauss (1986), which
in turn derived from developments in spatial statistics (Besag, 1974). These models recognize the
complex dependencies within relational data structures. To date, the use of stochastic network mod-
els for networks has been limited by three interrelated factors: the complexity of realistic models,
the lack of simulation tools for inference and validation, and a poor understanding of the inferential
properties of nontrivial models.

This manual introduces software tools for the representation, visualization, and analysis of network
data that address each of these previous shortcomings. The package relies on the network package


http://www.csde.washington.edu/statnet

8 ergm-terms

which allows networks to be represented in R. The ergm package allows maximum likelihood
estimates of exponential random network models to be calculated using Markov Chain Monte Carlo.
The package also provides tools for plotting networks, simulating networks and assessing model
goodness-of-fit.

For detailed information on how to download and install the software, go to the ergm website:
http://www.csde.washington.edu/statnet. A tutorial, support newsgroup, references
and links to further resources are provided there.

Author(s)

Mark S. Handcock (handcock @stat.washington.edu),
David R. Hunter (dhunter@stat.psu.edu),

Carter T. Butts (buttsc@uci.edu),

Steven M. Goodreau (goodreau@u.washington.edu), and
Martina Morris (morrism@u.washington.edu)

Maintainer: Mark S. Handcock (handcock @stat.washington.edu)

References

Besag, J., 1974, Spatial interaction and the statistical analysis of lattice systems (with discussion),
Journal of the Royal Statistical Society, B, 36, 192-236.

Frank, O., and Strauss, D.(1986). Markov graphs. Journal of the American Statistical Association,
81, 832-842.

Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M., and Morris, M. (2003), statnet: An
R package for the Statistical Modeling of Social Networks.,
URL http://www.csde.washington.edu/statnet

Strauss, D., and Ikeda, M.(1990). Pseudolikelihood estimation for social networks. Journal of the
American Statistical Association, 85, 204-212.

ergm-terms Terms used in Exponential Family Random Graph Models

Description

The function ergm is used to fit linear exponential random graph models, in which the probability
of a given network, y, on a set of nodes is exp{6-g(y)}/c(6), where g(y) is a vector of network
statistics for y, 6 is a parameter vector of the same length and ¢(6) is the normalizing constant for
the distribution.

The network statistics g(y) are entered as terms in the function call to ergm.

This page describes the possible terms (and hence network statistics).


http://www.csde.washington.edu/statnet
http://www.csde.washington.edu/statnet

ergm-terms 9

Specifying models

Terms to ergm are specified by a formula to represent the network and network statistics. This is
done via a formula, that is, an R formula object, of the formy ~ <term 1> + <term 2>
. .., where v is a network object or a matrix that can be coerced to a network object, and <term
1>, <term 2>, etc, are each terms chosen from the list given below. To create a network object in
R, use the network function, then add nodal attributes to it using the $v% operator if necessary.

Possible terms to represent network statistics

The ergm function allows the user to explore a large number of potential models for their network
data. What follows is a list of model terms currently available by the program, and a brief descrip-
tion of each. In the formula for the model, the model terms are various function-like calls, some of
which require arguments, separated by + signs.

Additional terms can be coded up by users via the statnetuserterms package.

The terms currently available are:

absdiff (attrname) Absolute Difference: The attrname argument is a character string giving the
name of an attribute in the network’s vertex attribute list. This term adds one network statistic to
the model equaling the sum of abs (attrname[i]-attrname[j]) for all edges (i,j) in the
network.

absdiffcat (attrname, base=NULL) Categorical Absolute Difference: The attrname argu-
ment is a character string giving the name of an attribute in the network’s vertex attribute list.
This term adds one statistic for every possible nonzero distinct value of abs (attrname[i]—
attrname[j]) in the network; the value of each such statistic is the number of edges in the
network with the corresponding absolute difference. The optional base argument is a vector in-
dicating which nonzero differences, in order from smallest to largest, should be omitted from the
model (i.e., treated like the zero-difference category). The base argument, if used, should contain
indices, not differences themselves. For instance, if the possible values of abs (attrname [1]—
attrname[7j]) are 0, 0.5, 3, 3.5, and 10, then to omit 0.5 and 10 one should set base=c (1,
4).

altkstar (lambda, fixed=FALSE) Alternating k-Star: This term adds one network statistic to
the model equal to a weighted alternating sequence of k-star statistics with weight parameter 1ambda.
This is the version given in Snijders et al. (2006). We suggest using the gwdegree term instead.
The gwdegree and altkstar produce mathematically equivalent models, as long as they are
used together with the edges (or kstar (1)) term, yet the interpretation of the gwdegree pa-
rameters is slightly more straightforward than the interpretation of the altkstar parameters. For
this reason, we recommend the use of the gwdegree instead of altkstar. See Section 3 and
especially equation (13) of http://www.sna.unimelb.edu.au/publications/cefd.
pdf for details. The optional argument fixed indicates whether the scale parameter 1ambda is
to be fit as a curved exponential family model (see Hunter and Handcock, 2006). The default is
FALSE, which means the scale parameter is not fixed and thus the model is a CEF model. This
term can only be used with undirected networks.

asymmetric Asymmetric Dyads: This term adds one network statistic to the model, equaling the num-
ber of pairs of actors for which exactly one of (i—j) or (j—+) exists. This term can only be used
with directed networks.


http://www.sna.unimelb.edu.au/publications/cef4.pdf
http://www.sna.unimelb.edu.au/publications/cef4.pdf

10 ergm-terms

blconcurrent (attrname) Concurrent node count for the first mode in a bipartite (aka two-mode)
network: This term adds one network statistic to the model, equal to the number of nodes in the
first mode of the network with degree 2 or higher. The first mode of a bipartite network object is
sometimes known as the "actor” mode. The optional term attrname is a character string giving
the name of an attribute in the network’s vertex attribute list. If this is specified then the count is
the number of nodes in the first mode with ties to at least 2 other nodes with the same value for that
attribute as the index node. This term can only be used with undirected networks.

bldegree (d, attrname) Degree for the first mode in a bipartite (aka two-mode) network: The d
argument is a vector of distinct integers. This term adds one network statistic to the model for each
element in d; the ¢th such statistic equals the number of nodes of degree d [1] in the first mode of
a bipartite network, i.e. with exactly d[1] edges. The first mode of a bipartite network object is
sometimes known as the "actor" mode. The optional term attrname is a character string giving
the name of an attribute in the network’s vertex attribute list. If this is specified then the degree
count is the number of nodes with the same value of the attribute as the ego node. This term can
only be used with undirected networks.

blfactor (attrname, base=1) Factor Attribute Effect for the first mode in a bipartite (aka two-
mode) network : The attrname argument is a character string giving the name of a categorical
attribute in the network’s vertex attribute list. This term adds multiple network statistics to the
model, one for each of (a subset of) the unique values of the att rname attribute. Each of these
statistics gives the number of times a node with that attribute in the first mode of the network appears
in an edge. The first mode of a bipartite network object is sometimes known as the "actor" mode.
To include all attribute values is usually not a good idea, because the sum of all such statistics
equals the number of edges and hence a linear dependency would arise in any model also including
edges. Thus, the base argument tells which value(s), numbered in order according to the sort
function, should be omitted. The default value, one, means that the smallest (i.e., first in sorted
order) attribute value is omitted, making this value the reference category to which all other values
are compared. For example, if the “fruit” factor has levels “orange”, “apple”, “banana”, and “pear”,
then to add just two terms, one for “apple” and one for “pear”, set “banana” and “orange” to the
base (remember to sort the values first) by using nodefactor ("fruit", base=2:3). This
term can only be used with undirected networks.

blstar (k, attrname) k-Stars for the first mode in a bipartite (aka two-mode) network: The k
argument is a vector of distinct integers. This term adds one network statistic to the model for
each element in k. The ith such statistic counts the number of distinct k [ 1 ]-stars whose center
node is in the first mode of the network. The first mode of a bipartite network object is sometimes
known as the "actor" mode. A k-star is defined to be a center node N and a set of k different nodes
{0, ..., 04} such that the ties { N, O, } existfori = 1,..., k. The optional argument att rname
is a character string giving the name of an attribute in the network’s vertex attribute list. If this is
specified then the count is over the number of k-stars (with center node in the first mode) where
all nodes have the same value of the attribute. This term can only be used for undirected networks.
Note that blstar (1) isequal tob2star (1) and to edges.

b2concurrent (attrname) Concurrent node count for the second mode in a bipartite (aka two-
mode) network: This term adds one network statistic to the model, equal to the number of nodes in
the second mode of the network with degree 2 or higher. The second mode of a bipartite network
object is sometimes known as the "event" mode. The optional term at t rname is a character string
giving the name of an attribute in the network’s vertex attribute list. If this is specified then the



ergm-terms 11

count is the number of nodes in the second mode with ties to at least 2 other nodes with the same
value for that attribute as the index node. This term can only be used with undirected networks.

b2degree (d, attrname) Degree for the second mode in a bipartite (aka two-mode) network: The
d argument is a vector of distinct integers. This term adds one network statistic to the model for
each element in d; the ith such statistic equals the number of nodes of degree d[1] in the second
mode of a bipartite network, i.e. with exactly d [1] edges. The second mode of a bipartite network
object is sometimes known as the "event" mode. The optional term at t rname is a character string
giving the name of an attribute in the network’s vertex attribute list. If this is specified then the
degree count is the number of nodes with the same value of the attribute as the ego node. This term
can only be used with undirected networks.

b2factor (attrname, base=1) Factor Attribute Effect for the second mode in a bipartite (aka
two-mode) network : The at t rname argument is a character string giving the name of a categorical
attribute in the network’s vertex attribute list. This term adds multiple network statistics to the
model, one for each of (a subset of) the unique values of the att rname attribute. Each of these
statistics gives the number of times a node with that attribute in the second mode of the network
appears in an edge. The second mode of a bipartite network object is sometimes known as the
"event" mode. To include all attribute values is usually not a good idea, because the sum of all such
statistics equals the number of edges and hence a linear dependency would arise in any model also
including edges. Thus, the base argument tells which value(s), numbered in order according to
the sort function, should be omitted. The default value, one, means that the smallest (i.e., first in
sorted order) attribute value is omitted, making this value the reference category to which all other
values are compared. For example, if the “fruit” factor has levels “orange”, “apple”, “banana”, and
“pear”, then to add just two terms, one for “apple” and one for “pear”, set “banana” and “orange”
to the base (remember to sort the values first) by using nodefactor ("fruit", base=2:3).
This term can only be used with undirected networks.

b2star (k, attrname) k-Stars for the second mode in a bipartite (aka two-mode) network: The k
argument is a vector of distinct integers. This term adds one network statistic to the model for each
element in k. The ith such statistic counts the number of distinct k [ 1 ] -stars whose center node is
in the second mode of the network. The second mode of a bipartite network object is sometimes
known as the "event” mode. A k-star is defined to be a center node N and a set of k different nodes
{O1,...,0y} such that the ties { N, O; } exist for i = 1,..., k. The optional argument att rname
is a character string giving the name of an attribute in the network’s vertex attribute list. If this is
specified then the count is over the number of k-stars (with center node in the second mode) where
all nodes have the same value of the attribute. This term can only be used for undirected networks.
Note that b2star (1) isequal toblstar (1) and to edges.

bounded.degree (d, bound) Bounded Degree: The d argument is a vector of distinct integers
representing degrees. bound is a vector of upper bounds corresponding to each degree. This term
adds one network statistic to the model for each element in d; the ith such statistic equals the
minimum of bound [1] and the number of nodes in the network of degree exactly d[i], i.e. with
exactly d[1] edges. This term can only be used with undirected networks; for directed networks
see bounded. idegree and bounded.odegree.

bounded.idegree (d, bound) Bounded In-Degree: The d argument is a vector of distinct integers
representing in-degrees. bound is a vector of upper bounds corresponding to each degree. This
term adds one network statistic to the model for each element in d; the ¢th such statistic equals the
minimum of bound [1] and the number of nodes in the network of in-degree exactly d[1i1], i.e.



12 ergm-terms

with exactly d[1] in-edges. This term can only be used with directed networks; for undirected
networks see bounded.degree.

bounded.istar (k, bound) Bounded In-Stars: The k argument is a vector of distinct integers.
bound is a vector of upper bounds corresponding to each degree. This term adds one network
statistic to the model for each element in k. The ith such statistic counts the number of distinct
k [ i]-instars in the network, where a k-instar is defined to be a node N and a set of £ different nodes
{O1, ..., O} such that the ties (N«0O;) all exist for j = 1,..., k. The value is the minimum of
this count and bound [i]. This term can only be used with directed networks; for undirected
networks, see bounded.kstar.

bounded.kstar (k, bound) Bounded k-Stars: The k argument is a vector of distinct integers.
bound is a vector of upper bounds corresponding to each degree. This term adds one network
statistic to the model for each element in k. The ith such statistic counts the number of distinct
k [i]-stars in the network, where a k-star is defined to be a node /N and a set of & different nodes
{O1, ..., Oy} such that the tie { N, O;} exists for j = 1,..., k. The value is the minimum of this
count and bound [1]. This term can only be used with undirected networks; for directed networks,
see bounded.istar, bounded.ostar.

bounded.odegree (d, bound) Bounded Out-Degree: The d argument is a vector of distinct in-
tegers representing in-degrees. bound is a vector of upper bounds corresponding to each degree.
This term adds one network statistic to the model for each element in d; the ith such statistic equals
the minimum of bound [1] and the number of nodes in the network of out-degree exactly d[1],
i.e. with exactly d [ 1] out-edges. This term can only be used with directed networks; for undirected
networks see bounded. degree.

bounded.ostar (k, bound) Bounded Out-Stars: The k argument is a vector of distinct integers.
bound is a vector of upper bounds corresponding to each degree. This term adds one network
statistic to the model for each element in k. The ith such statistic counts the number of distinct
k [1]-outstars in the network, where a k-instar is defined to be a node IV and a set of k differ-
ent nodes {O1, ..., Oy} such that the ties (N—O;) all exist for j = 1,...,k. The value is the
minimum of this count and bound [1]. This term can only be used with directed networks; for
undirected networks, see bounded.kstar.

bounded.triangle (bound) Bounded Triangles: This term adds one statistic to the model equal to
the minimum of the bound and the number of triangles in the network. For an undirected network,
a triangle is defined to be any set of three edges {4, j}, {j, k}, and {k, i}. For a directed network, a
triangle is defined as any set of three edges (i—j), (j—k) and either (k—1) or (i—k).

concurrent (attrname) Concurrent node count: This term adds one network statistic to the model,
equal to the number of nodes in the network with degree 2 or higher. The optional term att rname
is a character string giving the name of an attribute in the network’s vertex attribute list. If this is
specified then the count is the number of nodes with ties to at least 2 other nodes with the same
value for that attribute as the index node. This term can only be used with undirected networks.

ctriple (attrname) Cyclic Triples: This term adds one statistic to the model, equal to the number
of cyclic triples in the network, defined as a set of edges of the form {(i—j), (j—k), (k—14)}. Note
that for all directed networks, triangleisequaltottriple+ctriple, so at most two of these
three terms can be in a model. The optional argument attrname is a character string giving the
name of an attribute in the network’s vertex attribute list. If this is specified then the count is over
the number of cyclic triples where all three nodes have the same value of the attribute. This term
can only be used with directed networks.



ergm-terms 13

cycle (k) Cycles: The k argument is a vector of distinct integers. This term adds one network statistic
to the model for each element in k; the ¢th such statistic equals the number of cycles in the network
with length exactly k [1]. The cycle statistic applies to both directed and undirected graphs. For
directed networks, it counts directed cycles of length &, as opposed to undirected cycles in the undi-
rected case. The directed cycle terms of lengths 2 and 3 are equivalent to mutual and ctriple
(respectively). The undirected cycle term of length 3 is equivalent to triangle, and there is no
undirected cycle term of length 2.

degree (d, attrname) Degree: The d argument is a vector of distinct integers. This term adds one
network statistic to the model for each element in d; the ith such statistic equals the number of
nodes in the network of degree d [1i], i.e. with exactly d[1i] edges. The optional term att rname
is a character string giving the name of an attribute in the network’s vertex attribute list. If this is
specified then the degree count is the number of nodes with the same value of the attribute as the ego
node. This term can only be used with undirected networks; for directed networks see idegree
and odegree.

density Density: This term adds one network statistic equal to the density of the network. For undi-
rected networks, density equals kstar (1) or edges divided by n(n — 1)/2; for directed
networks, density equals edges or istar (1) orostar (1) divided by n(n — 1).

dsp (d) Dyadwise Shared Partners: The d argument is a vector of distinct integers. This term adds
one network statistic to the model for each element in d; the ith such statistic equals the number
of dyads in the network with exactly d [1] shared partners. This term can be used with directed
and undirected networks. For directed networks the count is over homogeneous shared partners
only (i.e., only partners on a directed two-path connecting the nodes in the dyad and in the same
direction).

dyadcov (x, attrname) Dpyadic Covariate: If the network is directed, x is either a (symmetric)
matrix of dyadic covariates, or an undirected network; if the latter, optional argument att rname
provides the name of the edge attribute to use for edge values. This term adds three statistics to the
model, representing the (polytomous) effect of the given covariate on the four possible dyad states
(i.e., null, out-tie, in-tie, mutual). The statistics are the appearance of mutual, upper-triangular
asymmetric, and lower-triangular asymmetric dyads (with the null state serving as a reference cate-
gory). If the network is undirected, x is either a matrix of edgewise covariates, or a network; if the
latter, optional argument att rname provides the name of the edge attribute to use for edge val-
ues. This term adds one statistic to the model, representing the effect of the given covariate on the
appearance of edges. The edgecov and dyadcov terms are equivalent for undirected networks.
dyadcov can be called more than once, to model the effects of multiple covariates.

edgecov (x, attrname=NULL) Edge Covariate: The x argument is either a matrix of edgewise
covariates, or a network; if the latter, optional argument att rname provides the name of the edge
attribute to use for edge values. This term adds one statistic to the model, representing the effect of
the given covariate on the appearance of edges. The edgecov term applies to both directed and
undirected networks. For undirected networks the covariates are also assumed to be undirected. The
edgecov and dyadcov terms are equivalent for undirected networks. edgecov can be called
more than once, to model the effects of multiple covariates.

edges Edges: This term adds one network statistic equal to the number of edges in the network. For
undirected networks, edges is equal to kstar (1) ; for directed networks, edges is equal to both
ostar (1) and istar (1).



14 ergm-terms

esp (d) Edgewise Shared Partners: The d argument is a vector of distinct integers. This term adds one
network statistic to the model for each element in d; the ith such statistic equals the number of
edges in the network with exactly d[1] shared partners. This term can be used with directed and
undirected networks. For directed networks the count is over homogeneous shared partners only
(i.e., only partners on a directed two-path connecting the nodes in the edge in the same direction as
the edge itself).

gwbldegree (decay, fixed=FALSE) Geometrically Weighted Degree Distribution for the first
mode in a bipartite (aka two-mode) network: This term adds one network statistic to the model
equal to the weighted degree distribution with weight parameter decay, for nodes in the first
mode of a bipartite network. The first mode of a bipartite network object is sometimes known
as the "actor" mode. This statistic is based on the version given as equation (14) in http:
//www.sna.unimelb.edu.au/publications/cef4.pdf. See the "Remark" in section
3 of that paper to see why it is used rather than the version given in Snijders et al. (2006). The
optional argument fixed indicates whether the scale parameter 1ambda is to be fit as a curved
exponential family model (see Hunter and Handcock, 2006). The default is FALSE, which means
the scale parameter is not fixed and thus the model is a CEF model. This term can only be used with
undirected networks.

gwb2degree (decay, fixed=FALSE) Geometrically Weighted Degree Distribution for the second
mode in a bipartite (aka two-mode) network: This term adds one network statistic to the model equal
to the weighted degree distribution with weight parameter decay, for nodes in the second mode
of a bipartite network. The second mode of a bipartite network object is sometimes known as the
"event"” mode. This statistic is based on the version given as equation (14) in http://www.sna.
unimelb.edu.au/publications/cefd.pdf. See the "Remark” in section 3 of that paper
to see why it is used rather than the version given in Snijders et al. (2006). The optional argument
fixed indicates whether the scale parameter 1ambda is to be fit as a curved exponential family
model (see Hunter and Handcock, 2006). The default is FALSE, which means the scale parameter is
not fixed and thus the model is a CEF model. This term can only be used with undirected networks.

gwdegree (decay, fixed=FALSE) Geometrically Weighted Degree Distribution: This term adds
one network statistic to the model equal to the weighted degree distribution with weight parameter
decay. This is the version given as equation (14) in http://www.sna.unimelb.edu.au/
publications/cefd.pdf. See the "Remark" in section 3 of that paper to see why it is used
rather than the version given in Snijders et al. (2006). The optional argument fixed indicates
whether the scale parameter 1ambda is to be fit as a curved exponential family model (see Hunter
and Handcock, 2006). The default is FALSE, which means the scale parameter is not fixed and thus
the model is a CEF model. This term can only be used with undirected networks.

gwdsp (alpha, fixed=FALSE) Geometrically Weighted Dyadwise Shared Partner Distribution:
This term adds one network statistic to the model equal to the geometrically weighted dyadwise
shared partner distribution with weight parameter alpha. The optional argument fixed indicates
whether the scale parameter Lambda is to be fit as a curved exponential family model (see Hunter
and Handcock, 2006). The default is FALSE, which means the scale parameter is not fixed and
thus the model is a CEF model. This term can be used with directed and undirected networks.
For directed networks the count is over homogeneous shared partners only (i.e., only partners on a
directed two-path connecting the nodes in the dyad and in the same direction).

gwesp (alpha, fixed=FALSE) Geometrically Weighted Edgewise Shared Partner Distribution: This
term adds one network statistic to the model equal to the geometrically weighted edgewise shared


http://www.sna.unimelb.edu.au/publications/cef4.pdf
http://www.sna.unimelb.edu.au/publications/cef4.pdf
http://www.sna.unimelb.edu.au/publications/cef4.pdf
http://www.sna.unimelb.edu.au/publications/cef4.pdf
http://www.sna.unimelb.edu.au/publications/cef4.pdf
http://www.sna.unimelb.edu.au/publications/cef4.pdf

ergm-terms 15

partner distribution with weight parameter alpha. The optional argument f i xed indicates whether
the scale parameter 1 ambda is to be fit as a curved exponential family model (see Hunter and Hand-
cock, 2006). The default is FALSE, which means the scale parameter is not fixed and thus the model
is a CEF model. This term can be used with directed and undirected networks. For directed net-
works the geometric weighting is over homogeneous shared partners only (i.e., only partners on a
directed two-path connecting the nodes in the edge in the same direction as the edge itself).

gwidegree (decay, fixed=FALSE) Geometrically Weighted In-Degree Distribution: This term
adds one network statistic to the model equal to the weighted in-degree distribution with weight
parameter decay. The optional argument f ixed indicates whether the scale parameter 1ambda
is to be fit as a curved exponential family model (see Hunter and Handcock, 2006). The default
is FALSE, which means the scale parameter is not fixed and thus the model is a CEF model. This
term can only be used with directed networks.

gwodegree (decay, fixed=FALSE) Geometrically Weighted Out-Degree Distribution: This term
adds one network statistic to the model equal to the weighted out-degree distribution with weight
parameter decay. The optional argument f i xed indicates whether the scale parameter 1ambda
is to be fit as a curved exponential family model (see Hunter and Handcock, 2006). The default
is FALSE, which means the scale parameter is not fixed and thus the model is a CEF model. This
term can only be used with directed networks.

hamming (x) Hamming Distance: This term adds one statistic to the model equal to the Hamming
distance of the network from the network specified by x.

idegree (d, attrname) In-Degree: The d argument is a vector of distinct integers. This term adds
one network statistic to the model for each element in d; the ith such statistic equals the number of
nodes in the network of in-degree d [ 1], i.e. the number of nodes with exactly d [1] in-edges. The
optional argument att rname is a character string giving the name of an attribute in the network’s
vertex attribute list. If this is specified then the count only considers edges in which both nodes have
the same value of the attribute. This term can only be used with directed networks; for undirected
networks see degree.

isolates Isolates: This term adds one statistic to the model equal to the number of isolates in the
network. For an undirected network, an isolate is defined to be any node with degree zero. This
term can only be used with undirected networks.

istar(k, attrname) In-Stars: The k argument is a vector of distinct integers. This term adds
one network statistic to the model for each element in k. The ith such statistic counts the number
of distinct k [1]-instars in the network, where a k-instar is defined to be a node N and a set of
k different nodes {Oy, ..., Oy} such that the ties (O;—N) exist for j = 1,..., k. The optional
argument attrname is a character string giving the name of an attribute in the network’s vertex
attribute list. If this is specified then the count is over the number of k-instars where all nodes have
the same value of the attribute. This term can only be used for directed networks; for undirected
networks see kstar. Note that istar (1) is equal to both ostar (1) and edges.

kstar (k, attrname) k-Stars: The k argument is a vector of distinct integers. This term adds one
network statistic to the model for each element in k. The <th such statistic counts the number of
distinct k [ 1] -stars in the network, where a k-star is defined to be a node N and a set of &k different
nodes {O1,...,0O} such that the ties {IV,O;} exist for ¢ = 1,...,k. The optional argument
attrname is a character string giving the name of an attribute in the network’s vertex attribute
list. If this is specified then the count is over the number of k-stars where all nodes have the same



16 ergm-terms

value of the attribute. This term can only be used for undirected networks; for directed networks,
see istar, ostar, twopath and m2star. Note that kstar (1) is equal to edges.

localtriangle (x) Triangles Within Neighborhoods: This term adds one statistic to the model
equal to the number of triangles in the network between nodes “close to” each other. For an
undirected network, a local triangle is defined to be any set of three edges between nodal pairs
{(i,7), (4, k), (k,7)} that are in the same neighborhood. For a directed network, a triangle is de-
fined as any set of three edges (i—j), (j—k) and either (k—1) or (k<) where again all nodes are
within the same neighborhood. The argument x is a network or an adjacency matrix that specifies
whether the two nodes are in the same neighborhood. Note that this is technically a special case of
triangle.

m2star Mixed 2-Stars, a.k.a 2-Paths: This term can only be used with directed networks; for undirected
networks see kstar (2). This term adds one statistic to the model, equal to the number of mixed
2-stars in the network, defined as a pair of edges (i— ), (j—k). A mixed 2-star is sometimes called
a 2-path because it is a directed path of length 2 from i to & via j. See also twopath.

match (attrname, diff=FALSE) Uniform Homophily and Differential Homophily: This is an
alias for nodematch (attrname, diff=FALSE).

meandeg Mean Vertex Degree: This term adds one network statistic to the model equal to the average
degree of a node. Note that this term is a constant multiple of both edges and density.

mutual Mutuality: This term adds one network statistic to the model, equaling the number of pairs of
actors ¢ and j for which (i—j) and (j—1) both exist. This term can only be used with directed
networks.

nodefactor (attrname, base=1) Factor Attribute Effect: The attrname argument is a char-
acter string giving the name of a categorical attribute in the network’s vertex attribute list. This term
adds multiple network statistics to the model, one for each of (a subset of) the unique values of the
attrname attribute. Each of these statistics gives the number of times a node with that attribute
appears in an edge in the network. In particular, for edges whose endpoints both have the same
attribute value, this value is counted twice. To include all attribute values is usually not a good
idea, because the sum of all such statistics equals twice the number of edges and hence a linear
dependency would arise in any model also including edges. Thus, the base argument tells which
value(s), numbered in order according to the sort function, should be omitted. The default value,
one, means that the smallest (i.e., first in sorted order) attribute value is omitted, making this value
the reference category to which all other values are compared. For example, if the “fruit” factor
has levels “orange”, “apple”, “banana”, and “pear”, then to add just two terms, one for “apple”
and one for “pear”, then set “banana” and “orange” to the base (remember to sort the values first)
by using nodefactor ("fruit", base=2:3). For an analogous term for quantitative vertex
attributes, see nodemain.

nodeifactor (attrname, base=1) Factor Attribute Effect for in-edges: The attrname argu-
ment is a character string giving the name of a categorical attribute in the network’s vertex attribute
list. This term adds multiple network statistics to the model, one for each of (a subset of) the
unique values of the attrname attribute. Each of these statistics gives the number of times a
node with that attribute appears as the terminal node of a directed tie. The base argument tells
which value(s), numbered in order according to the sort function, should be omitted. The default
value, one, means that the smallest (i.e., first in sorted order) attribute value is omitted, making
this value the reference category to which all other values are compared. For an example, see the
nodefactor entry. The nodeifactor term may only be used with directed networks.



ergm-terms 17

nodemain (attrname) Main Effect of a Covariate: The attrname argument is a character string
giving the name of a quantitative (not categorical) attribute in the network’s vertex attribute list.
This term adds a single network statistic to the model equaling the sum of attrname (i) and
attrname () forall edges (4, j) edges in the network. For categorical attributes, see nodefactor.
Note that for directed networks, nodemain equals receivercov plus sendercov.

nodematch (attrname, diff=FALSE) Uniform Homophily and Differential Homophily: The att rname

argument is a character string giving the name of an attribute in the network’s vertex attribute list.
When diff=FALSE, this term adds one network statistic to the model, which counts the num-
ber of edges (4, j) for which attrname (i) ==attrname (j). When dif f=TRUE, p network
statistics are added to the model, where p is the number of unique values of the attrname at-
tribute. The kth such statistic counts the number of edges (i, j) for which attrname (i) ==
attrname (j) == value (k), where value (k) is the kth smallest unique value of the attr-
name attribute.

nodemix (attrname, contrast=FALSE) Nodal Attribute Mixing: The attrname argument is
a character string giving the name of a categorical attribute in the network’s vertex attribute list.
This term adds one network statistic to the model for each possible pairing of attribute values. The
statistic equals the number of edges in the network in which the nodes have that pairing of values.
In other words, this term produces one statistic for every entry in the mixing matrix for the attribute.
The ordering of the attribute values is alphabetical. If the option cont rast=TRUE is used, then a
statistic for the first pairing is not included, making it the de facto reference category.

nodeofactor (attrname, base=1) Factor Attribute Effect for out-edges: The att rname argu-
ment is a character string giving the name of a categorical attribute in the network’s vertex attribute
list. This term adds multiple network statistics to the model, one for each of (a subset of) the
unique values of the attrname attribute. Each of these statistics gives the number of times a
node with that attribute appears as the node of origin of a directed tie. The base argument tells
which value(s), numbered in order according to the sort function, should be omitted. The default
value, one, means that the smallest (i.e., first in sorted order) attribute value is omitted, making
this value the reference category to which all other values are compared. For an example, see the
nodefactor entry. The nodeofactor term may only be used with directed networks.

odegree (d, attrname) Out-Degree: The d argument is a vector of distinct integers. This term
adds one network statistic to the model for each element in d; the ith such statistic equals the
number of nodes in the network of out-degree d [1], i.e. the number of nodes with exactly d [1i]
out-edges. The optional argument att rname is a character string giving the name of an attribute
in the network’s vertex attribute list. If this is specified then the count only considers edges in which
both nodes have the same value of the attribute. This term can only be used with directed networks;
for undirected networks see degree.

ostar (k, attrname) k-Outstars: The k argument is a vector of distinct integers. This term adds
one network statistic to the model for each element in k. The ¢th such statistic counts the number
of distinct k [ 1] -outstars in the network, where a k-outstar is defined to be a node N and a set of
k different nodes {O1, ..., O} such that the ties (N—O;) exist for j = 1,...,k. The optional
argument attrname is a character string giving the name of an attribute in the network’s vertex
attribute list. If this is specified then the count is the number of k-outstars where all nodes have
the same value of the attribute. This term can only be used with directed networks; for undirected
networks see kstar. Note that ostar (1) is equal to both istar (1) and edges.



18 ergm-terms

receiver Receiver Effect: This term adds one network statistic for each node equal to the number
of in-ties for that node. This measures the popularity of the node. The term for the first node is
omitted because of redundancy, but the coefficient can be computed as the negative of the sum of
the coefficients of all the other actors. That is, the average coefficient is zero, following the Holland-
Leinhardt parametrization of the p; model. This term can only be used with a directed network. For
undirected networks, see sociality.

receivercov (attrname) Receiver Covariate Effect: The att rname argument is a character string
giving the name of an attribute in the network’s vertex attribute list that takes numeric values. This
term adds one network statistic to the model equaling the sum of the attribute values of the re-
ceivers of all ties. This term can only be used with a directed network. For undirected networks,
see nodemain.

sender Sender Effect: This term adds one network statistic for each node equal to the number of out-ties
for that node. This measures the activity of the node. The term for the first node is omitted because
of redundancy, but the coefficient can be computed as the negative of the sum of the coefficients
of all the other actors. That is, the average coefficient is zero, following the Holland-Leinhardt
parametrization of the p; model. This term can only be used with a directed network. For undirected
networks, see sociality.

sendercov (attrname) Sender Covariate Effect: The attrname argument is a character string
giving the name of an attribute in the network’s vertex attribute list that takes numeric values. This
term adds one network statistic to the model equaling the sum of the attribute values of the senders
of all ties. This term can only be used with a directed network. For undirected networks, see
nodemain.

smalldiff (attrname, cutoff) Small Difference: The attrname argument is a character string
giving the name of an attribute in the network’s vertex attribute list and cutof £ is any real num-
ber. This term adds one network statistic to the model, equal to the number of edges (i, j) for which
abs (attrname (i) —attrname (7)) is less than or equal to cutoff.

sociality (attrname) Centralized Covariate Effect: This term adds one network statistic for each
node equal to the number of ties of that node. The optional att rname is a character string giving
the name of an attribute in the network’s vertex attribute list that takes categorical values. If pro-
vided, this term only counts ties between nodes with the same value of the attribute. This term can
only be used with undirected networks. For directed networks, see sender and receiver.

triangle (attrname) Triangles: This term adds one statistic to the model equal to the number of tri-
angles in the network. For an undirected network, a triangle is defined to be any set { (¢, ), (7, k), (k, %)}
of three edges. For a directed network, a triangle is defined as any set of three edges (i—j) and
(j—k) and either (k—1) or (k«—i). Note that for directed networks, triangle equals ttriple
plus ctriple, so at most two of these three terms can be in a model. The optional argument
attrname restricts the count to those triples of nodes with equal values of the vertex attribute
specified by att rname.

tripercent (attrname) Triangle Percentage: This term adds one statistic to the model equal to the
percentage of triangles in the network relative to the number of potential triangles. For the definition
of triangle, see triangle. A potential triangle is a 2-star. The optional argument attrname
restricts the counts (both numerator and denominator) to those triples of nodes with equal values of
the vertex attribute specified by at t rname. This term can only be used with undirected networks.



ergm 19

ttriple (attrname) Transitive Triples: This term adds one statistic to the model, equal to the num-
ber of transitive triples in the network, defined as a set of edges {(i—j), (j—k), (i—k)}. Note that
triangleequals ttriple+ctriple for a directed network, so at most two of the three terms
can be in a model. The optional argument attrname is a character string giving the name of an
attribute in the network’s vertex attribute list. If this is specified then the count is over the number
of transitive triples where all three nodes have the same value of the attribute. This term can only
be used with a directed network.

twopath 2-Paths: This term adds one statistic to the model, equal to the number of 2-paths in the
network. For directed network this is defined as a pair of edges (i—j), (j—k). Thatis, it is a
directed path of length 2 from ¢ to k via j. For directed networks a 2-path is also a mixed 2-star.
For undirected networks this is defined as a pair of edges {i,j}, {4, k}. That is, it is an undirected
path of length 2 from i to k via j, also known as a 2-star.

References

Hunter, D. R. and M. S. Handcock (2006), Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics, 15: 565-583.

Hunter, D. R. (2007), Curved exponential family models for social networks, Social Networks, 29:
216-230.

Snijders, T. A. B., P. E. Pattison, G. L. Robins, and M. S. Handcock (2006), New specifications for
exponential random graph models, Sociological Methodology, 36(1): 99-153.
See Also

ergm, network, %v%, %n%, summary.ergm, print.ergm

Examples

## Not run:
ergm(flomarriage ~ kstar(l:2) + absdiff ("wealth") + triangle)

ergm(molecule ~ edges + kstar(2:3) + triangle
+ nodematch ("atomic type",diff=TRUE)
+ triangle + absdiff ("atomic type"))
## End (Not run)

ergm Exponential Family Random Graph Models

Description

ergm is used to fit linear exponential random network models, in which the probability of a given
network, y, on a set of nodes is exp(6-g(y))/c(9), where g(y) is a vector of network statistics, 6 is a
parameter vector of the same length and ¢(6) is the normalizing constant for the distribution. ergm
can return either a maximum pseudo-likelihood estimate or an approximate maximum likelihood
estimator based on a Monte Carlo scheme.



20

Usage

ergm(formula,

ergm

theta0="MPLE",

MPLEonly=FALSE, MLestimate=!MPLEonly, seed=NULL,
burnin=10000, MCMCsamplesize=10000, interval=100, maxit=3,
constraints=~.,

control=ergm.control (),

verbose=FALSE, ...)

Arguments

formula

thetal

MPLEonly

MLestimate

burnin

formula; an R formula object, of the formy ~ <model terms>, wherey
is a network object or a matrix that can be coerced to a network object. For
the details on the possible <model terms>, see ergm—-terms. To create a
network object in R, use the network () function, then add nodal attributes
to it using the $v$% operator if necessary.

vector; the parameter value used to generate the MCMC sample and as a starting
value for the estimation. By default the MPLE is used (thetaO="MPLE").

logical; TRUE if the maximum pseudo-likelihood estimate is to be computed and
returned. Note that MPLEon1y=TRUE will render moot most other parameters
in this list.

logical; TRUE if only the Monte Carlo maximum likelihood estimate is to be
computed and returned.

count; the number of proposals before any MCMC sampling is done. It typically
is set to a fairly large number.

MCMCsamplesize

interval

maxit

constraints

count; the number of network statistics, randomly drawn from a given distribu-
tion on the set of all networks, returned by the Metropolis-Hastings algorithm.

count; the number of proposals between sampled statistics.

count; the number of times the parameter for the MCMC should be updated by
maximizing the MCMC likelihood. At each step the parameter is changed to the
values that maximizes the MCMC likelihood based on the current sample.

A one-sided formula specifying one or more constraints on the support of the
distribution of the networks being modeled, using syntax similar to the formula
argument. Multiple constraints may be given, separated by “+” operators. To-
gether with the model terms in the formula, the constraints define the distribution
of networks being modeled.

It is also possible to specify a proposal function directly by passing a string with
the function’s name. In that case, arguments to the proposal should be specified
through the prop.args argument to ergm. control.

The default is ~ ., for an unconstrained model.

The constraint terms currently implemented are
. or NULL A placeholder for no constraints: all networks of a particular size

and type have non-zero probability. Cannot be combined with other con-
straints.



ergm 21

bd (attribs, maxout,maxin,minout,minin) Constrain maximum and
minimum vertex degree. See ‘“Placing Bounds on Degrees” section for
more information.

degrees and nodedegrees Preserve the degree of each vertex of the given
network: only networks whose vertex degrees are the same as those in the
network passed in the model formula have non-zero probability.

degreedist Preserve the degree distribution of the given network: only net-
works whose degree distributions are the same as those in the network
passed in the model formula have non-zero probability.

indegreedist and outdegreedist Preserve the (respectively) indegree
or outdegree distribution of the given network.

edges Preserve the edge count of the given network: only networks having
the same number of edges as the network passed in the model formula have
non-zero probability.

Not all combinations of the above are supported.
control A list of control parameters for algorithm tuning. Constructed using ergm.control.

seed integer; random number integer seed. Defaults to NULL to use whatever the
state of the random number generater is at the time of the call.

verbose logical; if this is TRUE, the program will print out additional information, in-
cluding goodness of fit statistics.

Additional arguments, to be passed to lower-level functions in the future.

Value
ergm returns an object of class ergm that is a list consisting of the following elements:

coef The Monte Carlo maximum likelihood estimate of 6, the vector of coefficients
for the model parameters.

sample The n X p matrix of network statistics, where n is the sample size and p is the
number of network statistics specified in the model, that is used in the maximum
likelihood estimation routine.

iterations The number of Newton-Raphson iterations required before convergence.

MCMCtheta The value of € used to produce the Markov chain Monte Carlo sample. As
long as the Markov chain mixes sufficiently well, sample is roughly a random
sample from the distribution of network statistics specified by the model with
the parameter equal to MCMCtheta. If MPLEonly=TRUE then MCMCtheta
equals the MPLE.

loglikelihood
The approximate log-likelihood for the MLE. The value is only approximate
because it is estimated based on the MCMC random sample.

gradient The value of the gradient vector of the approximated loglikelihood function,
evaluated at the maximizer. This vector should be very close to zero.

hessian The Hessian matrix of the approximated loglikelihood function, evaluated at
the maximizer. This matrix may be inverted to give an approximate covariance
matrix for the MLE.



22

ergm

samplesize  The size of the MCMC sample
formula The original formula entered into the e rgm function.

statsmatrix If the option returnMCMCstats=TRUE, this is the the matrix of change
statistics from the MCMC run.

newnetwork The network generated at the end of the MCMC sampling.
proposal The structure containing information about the Metropolis-Hasting proposal used.
See the method print . ergm for details on how an e rgm object is printed. Note that the method

summary .ergm returns a summary of the relevant parts of the ergm object in concise summary
format.

Model Terms

The ergm function allows the user to explore a large number of potential models for their network
data. The terms currently supported by the program, and a brief description of each is given in
the documentation ergm—terms. In the formula for the model, the model terms are various
function-like calls, some of which require arguments, separated by + signs. See ergm-terms for
details.

Notes on model specification

Although each of the statistics in a given model is a summary statistic for the entire network, it
is rarely necessary to calculate statistics for an entire network in a proposed Metropolis-Hastings
step. Thus, for example, if the triangle term is included in the model, a census of all triangles in the
observed network is never taken; instead, only the change in the number of triangles is recorded for
each edge toggle.

In the implementation of ergm, the model is initialized in R, then all the model information is
passed to a C program that generates the sample of network statistics using MCMC. This sample
is then returned to R, which implements a simple Newton-Raphson algorithm to approximate the
MLE. An alternative style of maximum likelihood estimation is to use a stochastic approximation
algorithm. This can be chosen with the algorithm.control (style="Robbins-Monro")
option.

The default mechanism for proposing new networks for the MCMC sample space is the Metropolis-
Hastings algorithm, which simply chooses a dyad at random and proposes to toggle that edge; each
possible dyad is equally likely. The proposaltype option allow many more complex propos-
als to be specified. We have developed and implemented a wide range of algorithms. These are
described in the documentation for proposaltype. For example, we have included proposal
functions that condition on maintaining the absolute degree distribution for the observed network.
Each proposal network will have exactly the same number of nodes with each degree as does the
original network; this means that if the proposal network removes an edge between a node of degree
3 and a node of degree 5, it must also add an edge between a node of degree 2 and a node of degree
4. Note that one or both of the latter nodes may be the same as the former nodes.

The package is designed so that the user can add additional proposal types.

Placing Bounds on Degrees:

There are many times when one may wish to condition on the number of inedges or outedges
possessed by a node, either as a consequence of some intrinsic property of that node (e.g., to control



ergm 23

for activity or popularity processes), to account for known outliers of some kind, and thus we wish
to limit its indegree, an intrinsic property of the sampling scheme whence came our data (e.g., the
survey asked everyone to name only three friends total) or as a function of the attributes of the nodes
to which a node has edges (e.g., we specify that nodes designated “male” have a maximum number
of outdegrees to nodes designated “female”). To accomplish this we use the constraints term
bd.

Let’s consider the simple cases first. Suppose you want to condition on the total number of degrees
regardless of attributes. That is, if you had a survey that asked respondents to name three alters and
no more, then you might want to limit your maximal outdegree to three without regard to any of the
alters’ attributes. The argument is then:

constraints=~bd (maxout=3)

Similar calls are used to restrict the number of indegrees (maxin), the minimum number of outde-
grees (minout), and the minimum number of indegrees (minin).

You can also set ego specific limits. For example:
constraints=bd (maxout=rep(c(3,4),c(36,35)))
limits the first 36 to 3 and the other 35 to 4 outdegrees.

Multiple restrictions can be combined. bd is very flexible. In general, the bd term can contain up
to five arguments:

bd (attribs=attribs,
maxout=maxout,
maxin=maxin,
minout=minout,
minin=minin)

Omitted arguments are unrestricted, and arguments of length 1 are replicated out to all nodes (as
above). If an individual entry in maxout,..., minin is NA then no restriction of that kind is applied
to that actor.

In general, attribs is a matrix of the attributes on which we are conditioning. The dimensions
of attribs are n_nodes rows by attrcount columns, where attrcount is the number
of distinct attribute values on which we want to condition (i.e., a separate column is required for
“male” and “female” if we want to condition on the number of ties to both “male” and “female”
partners). The value of attribs[n, 1], therefore, is TRUE if node n has attribute value i, and
FALSE otherwise. (Note that, since each column represents only a single value of a single attribute,
the values of this matrix are all Boolean (TRUE or FALSE).) It is important to note that attribs
is a matrix of nodal attributes, not alter attributes.

So, for instance, if we wanted to construct an attribs matrix with two columns, one each for
male and female attribute values (we are conditioning on these values of the attribute “sex’), and
the attribute sex is represented in ads.sex as an n_node-long vector of Os and 1s (men and women),
then our code would look as follows:

# male column: bit vector, TRUE for males
attrsexl <- (ads.sex == 0)
# female column: bit vector, TRUE for females

attrsex?2 <- (ads.sex == 1)

# now create attribs

attribs <- matrix(ncol=2,nrow=71,

matrix

data=c (attrsexl, attrsex2))



24

ergm

maxout is a matrix of alter attributes, with the same dimensions as the att ribs matrix. maxout
is n_nodes rows by attrcount columns. The value of maxout [n, 1], therefore, is the maxi-
mum number of outdegrees permitted from node n to nodes with the attribute 1 (where a NA means
there is no maximum).

For example: if we wanted to create a maxout matrix to work with our attribs matrix above,
with a maximum from every node of five outedges to males and five outedges to females, our code
would look like this:

# every node has maximum of 5 outdegrees to male alters
maxoutsexl <- c(rep(5,71))

# every node has maximum of 5 outdegrees to female alters
maxoutsex2 <- c(rep(5,71))

# now create maxout matrix

maxout <- cbind(maxoutsexl,maxoutsex?2)

The maxin, minout, and minin matrices are constructed exactly like the maxout matrix, except
for the maximum allowed indegree, the minimum allowed outdegree, and the minimum allowed
indegree, respectively. Note that in an undirected network, we only look at the outdegree matrices;
maxin and minin will both be ignored in this case.

attribs[n] [0] = 1 # just the ego values
maxout [n] [0] = minout[n] [0] = observed outdegree of n in network
maxin[n] [0] = minin[n] [0] = observed indegree of n in network

Dealing with degeneracy

In order to begin the process of estimating network coefficients, we need starting values - guesses
at the true values of the network statistic coefficients. The default is to begin the MCMC estima-
tion process at the deterministic MPLE values. These values are often taken as good-enough final
answers by many other applications. However recent work has indicated that they are sub-optimal
and can be dramatically bad.

In using the MPLE values, MCMC MLE often runs into problems caused by the inherent instability
of the natural parameter space of the models (Handcock 2000, 2002, 2003). If the initial values
for the parameter coefficients are off by a very small amount in the wrong direction, the result is
often a sample of networks that are degenerate - that is, networks that are entirely full or entirely
empty, or that are otherwise less-than-representative of the sample of network space our process
is attempting to explore. (In part, this is an indication of why one should not rely solely on the
MPLE). The package contains many algorithmic tools to obtain quality inference. If the sample of
networks is degenerate, our algorithm will fail in its calculation of an MLE for our data (usually in
constructing the Hessian matrix). See the references for details, especially Handcock (2003) and
Hunter and Handcock (2006).

References

Boer, P., Huisman, M., Snijders, T.A.B., and Zeggelink, E.PH. (2003). StOCNET: an open soft-
ware system for the advanced statistical analysis of social networks. Version 1.4. Groningen:

ProGAMMA /1CS



ergm 25

Handcock, M.S. (2000) Progress in Statistical Modeling of Drug User and Sexual Networks, Center
for Statistics and the Social Sciences, University of Washington.

Handcock, M. S. (2002) Degeneracy and inference for social network models Paper presented at
the Sunbelt XXII International Social Network Conference in New Orleans, LA.

Handcock, M. S. (2003) Assessing Degeneracy in Statistical Models of Social Networks, Working
Paper #39, Center for Statistics and the Social Sciences, University of Washington. www.csss.
washington.edu/Papers/wp39.pdf

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics.

See Also

network, %v%, %n%, ergm-terms, summary.ergm, print.ergm

Examples

#

# load the Florentine marriage data matrix

#

data (flo)

#

# attach the sociomatrix for the Florentine marriage data
# This is not yet a network object.

#

flo

#

# Create a network object out of the adjacency matrix

#

flomarriage <- network (flo,directed=FALSE)

flomarriage

#

# print out the sociomatrix for the Florentine marriage data
#

flomarriagel, ]

#

# create a vector indicating the wealth of each family (in thousands of lira)
# and add it as a covariate to the network object

#

flomarriage %$v$% "wealth" <- c¢(10,36,27,146,55,44,20,8,42,103,48,49,10,48,32,3)
flomarriage

#

# create a plot of the social network

#

plot (flomarriage)

#

# now make the vertex size proportional to their wealth

#

plot (flomarriage, vertex.cex="wealth", main="Marriage Ties")
#

# Use 'data(package = "ergm")' to list the data sets in a

#


www.csss.washington.edu/Papers/wp39.pdf
www.csss.washington.edu/Papers/wp39.pdf

26 ergm.control

data (package="ergm")

#

# Load a network object of the Florentine data

#

data (florentine)

#

# Fit a model where the propensity to form ties between

# families depends on the absolute difference in wealth

#

gest <- ergm(flomarriage ~ edges + absdiff ("wealth"))
summary (gest)

#

# add terms for the propensity to form 2-stars and triangles
# of families

#

gest <- ergm(flomarriage ~ kstar(l:2) + absdiff ("wealth") + triangle)
summary (gest)

# import synthetic network that looks like a molecule

data (molecule)

# Add a attribute to it to mimic the atomic type

molecule %v% "atomic type" <- c¢(1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3)
#

# create a plot of the social network

# colored by atomic type

#

plot (molecule, vertex.col="atomic type",vertex.cex=3)

# measure tendency to match within each atomic type

gest <- ergm(molecule ~ edges + kstar(2) + triangle + nodematch ("atomic type"),
MCMCsamplesize=10000)

summary (gest)

# compare it to differential homophily by atomic type
gest <- ergm(molecule ~ edges + kstar(2) + triangle
+ nodematch ("atomic type",diff=TRUE),
MCMCsamplesize=10000)
summary (gest)

ergm.control Auxiliary for Controlling ERGM Fitting

Description

Auxiliary function as user interface for fine-tuning *ergm’ fitting.

Usage

ergm.control (prop.weights = "default", prop.args = NULL,
prop.weights.diss = "default", prop.args.diss = NULL, nr.maxit =



ergm.control 27

100, calc.mcmc.se = TRUE, hessian = FALSE, compress = FALSE,
maxNumDyadTypes = 10000, maxedges = 20000, maxchanges = 1le+06,
MPLEsamplesize = 50000, MPLEtype=c("glm", "penalized"), trace = 0,
steplength = 0.5, drop = TRUE, force.mcmc = FALSE, mcmc.precision =
0.05, metric = c("Likelihood", "raw"), method = c("BFGS", "Nelder-—-Meac
trustregion = 20, initial.loglik = NULL,

style = c("Newton-Raphson", "Robbins-Monro",
"Stochastic—-Approximation”), phasel_n = NULL, initial_gain = NULL,
nsubphases = "maxit", niterations = NULL, phase3_n = NULL,

RobMon.phaseln_base = 7, RobMon.phase2n_base = 7, RobMon.phase2sub
= 4, RobMon.init_gain = 0.4, RobMon.phase3n = 500, dyninterval =
1000, parallel = 0, returnMCMCstats = TRUE)

Arguments

prop.weights Specifies the method to allocate probabilities of being proposed to dyads. De-
faults to "default", which picks a reasonable default for the specified con-
straint. Possible values are "TNT", "random", and "nonobserved", though
not all values may be used with all possible constraints (in the e rgm function).

prop.args An alternative, direct way of specifying additional arguments to proposal.
prop.weights.diss

As prop.weights, for dissolution model.
prop.args.diss

As prop.args, for dissolution model.

nr.maxit count; The maximum number of iterations in the Newton-Raphson optimiza-
tion. Defaults to 100. maxit gives the total number of likelihood function
evaluations.

calc.mcmc. se logical; should the contribution to the standard errors of the estimator incurred
by the MCMC sampling be computed. Default is TRUE.

hessian logical; Should the Hessian matrix of the likelihood function be computed. De-
fault is TRUE.

compress logical; Should the matrix of sample statistics returned be compressed to the set
of unique statistics with a column of frequencies post-pended. This also uses a
compression algorithm in the computation of the maximum psuedo-likelihood
estimate that will dramatically speed it for large networks. Default is FALSE.

maxNumDyadTypes

count; The maximum number of unique pseudolikelihood change statistics to be
allowed if compress=TRUE. Itis only relevant in that case. Defaultis 10000.

maxedges Maximum number of edges for which to allocate space.
maxchanges  Maximum number of changes in dynamic network simulation for which to allo-
cate space.

MPLEsamplesize
count; the sample size to use for endogenous sampling in the pseudolikelihood
computation. Default is 50000.



28

MPLEtype

trace

steplength
drop

force.mcmc

ergm.control

one of "glm" or "penalized"; method to use for psuedolikelihood. "glm" is the
usual formal logistic regression. "penalized" uses the bias-reduced method of
Firth (1983) as originally implemented by Meinhard Ploner, Daniela Dunkler,
Harry Southworth, and Georg Heinze in the "logistf" package. Default is "glm".

non-negative integer; If positive, tracing information on the progress of the op-
timization is produced. Higher values may produce more tracing information:
for method "L-BFGS—-B" there are six levels of tracing. (To understand exactly
what these do see the source code for opt im: higher levels give more detail.)

Multiplier for step length, to make fitting more stable at the cost of efficiency.

logical; Should the degenerate terms in the model be dropped from the fit? If
statistics occur on the extreme of their range they correspond to infinite param-
eter estimates. Default is TRUE.

logical; should MCMC maximum likelihood be used? Only relevant for dyadic
independent networks, in which the MLE could be found using MPLE instead.

mcmc.precision

metric

method

trustregion

vector; upper bounds on the precision of the standard errors induced by the
MCMC algorithm. Defaults to 0. 05.

character; The name of the optimization metric to use. Defaults to "Likelihood".

character; The name of the optimization method to use. See optim for the
options. The default method "BFGS" is a quasi-Newton method (also known
as a variable metric algorithm). It is attributed to Broyden, Fletcher, Goldfarb
and Shanno. This uses function values and gradients to build up a picture of the
surface to be optimized.

numeric; The maximum amount the algorithm will allow the approximated like-
lihood to be increased at a given iteration. Defaults to 20. See Boer, Huisman,
Snijders, and Zeggelink (2003) for details.

initial.loglik

style

phasel_n

initial_gain

nsubphases

niterations

Initial value of loglikelihood, if known.

character; The style of maximum likelihood estimation to use. The default is
optimization of an MCMC estimate of the log-likelihood. An alternative is to
use a form of stochastic approximation ("Robbins-Monro"). The direct use
of the likelihood function has many theoretical advantages over stochastic ap-
proximation, but the choice will depend on the model and data being fit. See
Handcock (2000) and Hunter and Handcock (2006) for details.

count; The number of MCMC samples to draw in Phase 1 of the stochastic
approximation algorithm. Defaults to 7 plus 3 times the number of terms in the
model. See Boer, Huisman, Snijders, and Zeggelink (2003) for details.

numeric; The initial gain to Phase 2 of the stochastic approximation algorithm.
Defaults to 0.1. See Boer, Huisman, Snijders, and Zeggelink (2003) for details.

count; The number of sub-phases in Phase 2 of the stochastic approximation
algorithm. Defaults to maxit. See Boer, Huisman, Snijders, and Zeggelink
(2003) for details.

count; The number of MCMC samples to draw in Phase 2 of the stochastic
approximation algorithm. Defaults to 7 plus the number of terms in the model.
See Boer, Huisman, Snijders, and Zeggelink (2003) for details.



ergmuserterms-package 29

phase3_n count; The sample size for the MCMC sample in Phase 3 of the stochastic ap-
proximation algorithm. Defaults to 1000. See Boer, Huisman, Snijders, and
Zeggelink (2003) for details.

RobMon.phaseln_base
Robbins-Monro control parameter

RobMon.phase2n_base
Robbins-Monro control parameter

RobMon.phase2sub
Robbins-Monro control parameter

RobMon.init_gain
Robbins-Monro control parameter

RobMon.phase3n
Robbins-Monro control parameter

returnMCMCstats
logical; If this is TRUE (the default) the matrix of change statistics from the
MCMC run is returned as component sample. This matrix is actually an object
of class mcme and can be used directly in the CODA package to assess MCMC

convergence.

dyninterval Number of Metropolis-Hastings proposal for each phase in the dynamic network
simulation.

parallel Number of threads in which to run the sampling.

Value

A list with arguments as components.

See Also

ergm, glm.control performs a similar function for glm

ergnuserterms—package
Add Statistics Terms for the ’ergm’ Package

Description

The ergm package is capable of fitting a wide range of exponential random network models, in
which the probability of a given network, y, on a set of nodes is exp(6-g(y))/c(f), where g(y) is a
vector of network statistics, 6 is a parameter vector of the same length and ¢(#) is the normalizing
constant for the distribution. The ergm function fits these models when they are expressed via an
R formula object, of the form y ~ <model terms>, where y is a network object or a matrix
that can be coerced to a network object. To create a network object in R, use the network ()
function, then add nodal attributes to it using the $v% operator if necessary.

The ergm package contains a wide range of terms. For the details on the possible <model
terms>, see ergm—-terms.

This package can be modified by users to add user-defined terms to ergm models. The terms can
be used throughout the e rgm package and behave identically to the supplied terms.



30 faux.magnolia.high

Details

The ergmuserterms package is available from the statnet website (http://csde.washington.
edu/statnet).

The code contains some simple examples and templates. These include:

m2star Mixed 2-stars, a.k.a. 2-paths. This option can only be specified with a directed network; for
undirected graphs see kstar (2) . This option adds one statistic to the model, equal to the number
of mixed-2-stars in the network, defined as a pair of edges {(i—j), (j—Fk)}.

testme A clone of Edges. This is included for purposes of an example. This option adds one graph
statistic equal to the number of edges in the graph. For undirected graphs, edges is isomorphic to
kstar (1); for directed networks, edges is isomorphic to both ostar (1) and istar (1).

In the implementation of ergm, the model is initialized in R, then all the model information is
passed to a C program that generates the sample of graph statistics using MCMC. This sample is
then returned to R, which then approximates the MLE.

See Also

ergm, network, ergm-terms

Examples

## Not run:

library (ergmuserterms)

data (sampson)

monk.fit <- ergm(samplike~m2star)
summary (monk.fit)

monk.fit <- ergm(samplike ~ m2star + testme)
summary (monk.fit)
## End (Not run)

faux.magnolia.high Goodreau’s Faux Magnolia High School as a network object

Description

This data set represents a simulation of an in-school friendship network. The network is named
faux.magnolia.high because the school commnunities on which it is based are large and located in

the southern US.

Usage

data (faux.magnolia.high)


http://csde.washington.edu/statnet
http://csde.washington.edu/statnet

faux.magnolia.high 31

Format

faux.magnolia.highisanetwork object with 1461 vertices (students, in this case) and 974
undirected edges (mutual friendships). To obtain additional summary information about it, type
summary (faux.magnolia.high).

The vertex attributes are Grade, Sex, and Race. The Grade attribute has values 7 through 12,
indicating each student’s grade in school. The Sex attribute has values 1 for male and 2 for female.
The Race attribute is based on the answers to two questions, one on Hispanic identity and one on
race, and takes values 1 through 6: 1 = White (non-Hisp.); 2 = Black (non-Hisp.); 3 = Hispanic; 4
= Asian (non-Hisp.); 5 = Native American (non-Hisp.); and 6 = Other (non-Hisp.)

Licenses and Citation

If the source of the data set does not specified otherwise, this data set is protected by the Creative
Commons License http://creativecommons.org/licenses/by-nc-nd/2.5/.

When publishing results obtained using this data set, the original authors (Resnick et al, 1997)
should be cited. In addition this package should be cited as:

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris.
2003 statnet: An R package for the Statistical Modeling of Social Networks
http://www.csde.washington.edu/statnet.

Source

The data set is based upon a model fit to data from two school communities from the AddHealth
Study, Wave I (Resnick et al., 1997). It was constructed as follows:

The two schools in question (a junior and senior high school in the same community) were com-
bined into a single network dataset. Students who did not take the AddHealth survey or who were
not listed on the schools’ student rosters were eliminated, then an undirected link was established
between any two individuals who both named each other as a friend. All missing race, grade, and
sex values were replaced by a random draw with weights determined by the size of the attribute
classes in the school.

The following e rgm model was fit to the original data:

magnolia.fit <- ergm (magnolia ~ edges + nodematch ("Grade",diff=T)
+ nodematch ("Race",diff=T) + nodematch ("Sex",diff=F)
+ absdiff ("Grade") + gwesp(0.25,fixed=T), burnin=10000,
interval=1000, MCMCsamplesize=2500, maxit=25,
control=ergm.control (steplength=0.25))

Then the faux.magnolia.high dataset was created by simulating a single network from the above
model fit:

faux.magnolia.high <- simulate (magnolia.fit, nsim=1, burnin=100000000,
constraint = "edges")


http://creativecommons.org/licenses/by-nc-nd/2.5/
http://www.csde.washington.edu/statnet

32 faux.mesa.high

References
Resnick M.D., Bearman, P.S., Blum R.W. et al. (1997). Protecting adolescents from harm. Find-
ings from the National Longitudinal Study on Adolescent Health, Journal of the American Medical
Association, 278: 823-32.

See Also

network, plot.network, ergm

faux.mesa.high Goodreau’s Faux Mesa High School as a network object

Description

This data set (formerly called “fauxhigh”) represents a simulation of an in-school friendship net-
work. The network is named faux .mesa.high because the school commnunity on which it is
based is in the rural western US, with a student body that is largely Hispanic and Native American.

Usage

data (faux.mesa.high)

Format

faux.mesa.high is a network object with 205 vertices (students, in this case) and 203 undi-
rected edges (mutual friendships). To obtain additional summary information about it, type summary (faux.mesa.high)

The vertex attributes are Grade, Sex, and Race. The Grade attribute has values 7 through 12,
indicating each student’s grade in school. The Sex attribute has values 1 for male and 2 for female.
The Race attribute is based on the answers to two questions, one on Hispanic identity and one on
race, and takes values 1 through 6: 1 = White (non-Hisp.); 2 = Black (non-Hisp.); 3 = Hispanic; 4
= Asian (non-Hisp.); 5 = Native American (non-Hisp.); and 6 = Other (non-Hisp.)

Licenses and Citation

If the source of the data set does not specified otherwise, this data set is protected by the Creative
Commons License http://creativecommons.org/licenses/by-nc-nd/2.5/.

When publishing results obtained using this data set, the original authors (Resnick et al, 1997)
should be cited. In addition this package should be cited as:

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris.
2003 statnet: An R package for the Statistical Modeling of Social Networks
http://www.csde.washington.edu/statnet.


http://creativecommons.org/licenses/by-nc-nd/2.5/
http://www.csde.washington.edu/statnet

flobusiness 33

Source

The data set is based upon a model fit to data from one school community from the AddHealth
Study, Wave I (Resnick et al., 1997). It was constructed as follows:

A vector representing the sex of each student in the school was randomly re-ordered. The same was
done with the students’ response to questions on race and grade. These three attribute vectors were
permuted independently. Missing values for each were randomly assigned with weights determined
by the size of the attribute classes in the school.

The following e rgm formula was used to fit a model to the original data:

~ edges + nodefactor ("Grade") + nodefactor ("Race") + nodefactor ("Sex")
+ nodematch ("Grade",diff=T) + nodematch ("Race",diff=T)
+ nodematch ("Sex",diff=F) + gwdegree (1.0, fixed=T)
+ gwesp (1.0, fixed=T) + gwdsp(l.0, fixed=T)

The resulting model fit was then applied to a network with actors possessing the permuted attributes
and with the same number of edges as in the original data.

The processes for handling missing data and defining the race attribute are described in Hunter,
Goodreau & Handcock (2007).

References

Hunter D.R., Goodreau S.M. and Handcock M.S. (2007). Goodness of Fit of Social Network Mod-
els, Journal of the American Statistical Association.

Resnick M.D., Bearman, P.S., Blum R.W. et al. (1997). Protecting adolescents from harm. Find-
ings from the National Longitudinal Study on Adolescent Health, Journal of the American Medical
Association, 278: 823-32.

See Also

network, plot.network, ergm

flobusiness Florentine Family Business Ties Data as a “network” object

Description

This is a data set of business ties among Renaissance Florentine families. The data is originally
from Padgett (1994) via UCINET and stored as a network object.

Breiger & Pattison (1986), in their discussion of local role analysis, use a subset of data on the so-
cial relations among Renaissance Florentine families (person aggregates) collected by John Padgett
from historical documents. The relations are business ties (flobusiness - specifically, recorded
financial ties such as loans, credits and joint partnerships).

As Breiger & Pattison point out, the original data are symmetrically coded. This is acceptable
perhaps for marital ties, but is unfortunate for the financial ties (which are almost certainly directed).



34 flomarriage

To remedy this, the financial ties can be recoded as directed relations using some external measure
of power - for instance, a measure of wealth. Vertex information is provided (1) wealth each
family’s net wealth in 1427 (in thousands of lira); (2) priorates the number of priorates (seats
on the civic council) held between 1282- 1344; and (3) totalties the total number of business
or marriage ties in the total dataset of 116 families (see Breiger & Pattison (1986), p 239).

Substantively, the data include families who were locked in a struggle for political control of the
city of Florence around 1430. Two factions were dominant in this struggle: one revolved around
the infamous Medicis (9), the other around the powerful Strozzis (15).

Usage

data (florentine)

Source
Padgett, John F. 1994. Marriage and Elite Structure in Renaissance Florence, 1282-1500. Paper
delivered to the Social Science History Association.

References

Wasserman, S. and Faust, K. (1994) Social Network Analysis: Methods and Applications, Cam-
bridge University Press, Cambridge, England.

Breiger R. and Pattison P. (1986). Cumulated social roles: The duality of persons and their alge-
bras, Social Networks, 8, 215-256.

See Also

flo, network, plot.network, ergm, flomarriage

flomarriage Florentine Family Marriage Ties Data as a “network" object

Description

This is a data set of marriage ties among Renaissance Florentine families. The data is originally
from Padgett (1994) via UCINET and stored as a network object.

Breiger & Pattison (1986), in their discussion of local role analysis, use a subset of data on the so-
cial relations among Renaissance Florentine families (person aggregates) collected by John Padgett
from historical documents. The relations are marriage alliances (flomarriage betwween the
families.

As Breiger & Pattison point out, the original data are symmetrically coded. This is perhaps ac-
ceptable perhaps for marital ties. Vertex information is provided on (1) wealth each family’s net
wealth in 1427 (in thousands of lira); (2) priorates the number of priorates (seats on the civic
council) held between 1282- 1344; and (3) totalties the total number of business or marriage
ties in the total dataset of 116 families (see Breiger & Pattison (1986), p 239).

Substantively, the data include families who were locked in a struggle for political control of the
city of Florence around 1430. Two factions were dominant in this struggle: one revolved around
the infamous Medicis (9), the other around the powerful Strozzis (15).



florentine 35

Usage

data (florentine)

Source
Padgett, John F. 1994. Marriage and Elite Structure in Renaissance Florence, 1282-1500. Paper
delivered to the Social Science History Association.

References

Wasserman, S. and Faust, K. (1994) Social Network Analysis: Methods and Applications, Cam-
bridge University Press, Cambridge, England.

Breiger R. and Pattison P. (1986). Cumulated social roles: The duality of persons and their alge-
bras, Social Networks, 8, 215-256.

See Also

flobusiness, flo, network, plot.network, ergm

florentine Florentine Family Marriage and Business Ties Data as a “network”
object

Description

This is a data set of marriage and business ties among Renaissance Florentine families. The data is
originally from Padgett (1994) via UCINET and stored as a network object.

Breiger & Pattison (1986), in their discussion of local role analysis, use a subset of data on the
social relations among Renaissance Florentine families (person aggregates) collected by John Pad-
gett from historical documents. The two relations are business ties (flobusiness - specifi-
cally, recorded financial ties such as loans, credits and joint partnerships) and marriage alliances
(flomarriage).

As Breiger & Pattison point out, the original data are symmetrically coded. This is acceptable
perhaps for marital ties, but is unfortunate for the financial ties (which are almost certainly directed).
To remedy this, the financial ties can be recoded as directed relations using some external measure of
power - for instance, a measure of wealth. Both graphs provide vertex information on (1) wealth
each family’s net wealth in 1427 (in thousands of lira); (2) priorates the number of priorates
(seats on the civic council) held between 1282- 1344; and (3) totalties the total number of
business or marriage ties in the total dataset of 116 families (see Breiger & Pattison (1986), p 239).

Substantively, the data include families who were locked in a struggle for political control of the
city of Florence around 1430. Two factions were dominant in this struggle: one revolved around
the infamous Medicis (9), the other around the powerful Strozzis (15).

Usage

data (florentine)



36 g4

Source

Padgett, John F. 1994. Marriage and Elite Structure in Renaissance Florence, 1282-1500. Paper
delivered to the Social Science History Association.

References

Wasserman, S. and Faust, K. (1994) Social Network Analysis: Methods and Applications, Cam-
bridge University Press, Cambridge, England.

Breiger R. and Pattison P. (1986). Cumulated social roles: The duality of persons and their alge-
bras, Social Networks, 8, 215-256.

See Also

flo, network, plot.network, ergm

g4 Goodreau’s four node network as a “network” object

Description

This is an example thought of by Steve Goodreau. It is a directed network of four nodes and five
ties stored as a network object.

It is interesting because the maximum likelihood estimator of the model with out degree 3 in it
exists, but the maximum psuedolikelihood estimator does not.

Usage

data (g4)

Source

Steve Goodreau

See Also

florentine, network, plot.network, ergm

Examples

data (g4)
summary (ergm (g4 ~ odegree(3), MPLEonly=TRUE))
summary (ergm (g4 ~ odegree(3), thetal0=0))



gof.ergm.control 37

gof.ergm.control  Auxiliary for Controlling ERGM Goodness-of-Fit Evaluation

Description

Auxiliary function as user interface for fine-tuning ERGM Goodness-of-Fit Evaluation.

Usage

gof.formula.control (prop.weights = "default", prop.args = NULL, drop =
TRUE, summarizestats = FALSE, maxchanges = 1e+06)

gof.ergm.control (prop.weights = NULL, prop.args = NULL, drop = TRUE, summarizestat:

Arguments

prop.weights Specifies the method to allocate probabilities of being proposed to dyads. For
the simulate.formula variant, defaults to "default", which picks a rea-
sonable default for the specified constraint. For simulate.ergm variant, de-
faults to NULL, to reuse the weights with which the given ergm. object was
fitted. Other possible values are "TNT", "random", and "nonobserved",
though not all values may be used with all possible constraints.

prop.args An alternative, direct way of specifying additional arguments to proposal.

drop logical; Should the degenerate terms in the model be dropped from the fit? If
statistics occur on the extreme of their range they correspond to infinite param-
eter estimates. Default is TRUE.

summarizestats
logical; Print out a summary of the sufficient statistics of the generated network.
This is useful as a diagnostic. Default is FALSE.

maxchanges Maximum number of changes in dynamic network simulation for which to allo-
cate space.

Value

A list with arguments as components.

See Also

gof.formula, gof.ergm, glm.control performs a similar function for glm



38

gof.ergm

gof.ergm

Conduct Goodness-of-Fit Diagnostics on a Exponential Family Ran-

dom Graph Model

Description

gof calculates p-values for geodesic distance, degree, and reachability summaries to diagnose the
goodness-of-fit of exponential family random graph models. See ergm for more information on
these models.

Usage

## Default S3 method:

gof (object,...)

## S3 method for class 'formula':
gof (formula, ..., thetaO=NULL,

nsim=100, burnin=10000, interval=1000,

GOF=~degreetespartners+distance,
constraints=~.,
control=gof.formula.control (),
seed=NULL,

verbose=FALSE)

## S3 method for class 'ergm':
gof (object, ...,

Arguments

object

formula

thetal

nsim

nsim=100,
GOF=~degreetespartners+distance,
burnin=10000, interval=1000,
constraints=NULL,
control=gof.ergm.control (),
seed=NULL,

thetaO0=NULL, verbose=FALSE)

an R object. Either a formula or an ergm object. See documentation for ergm.

formula; An R formula object, of the form y ~ <model terms>, where y
is a network object or a matrix that can be coerced to a network object. This
specifies the model to simulate from. For the details on the possible <model
terms>, see ergm—-terms. To create a network object in R, use the network ()
function, then add nodal attributes to it using the $v% operator if necessary.

When given either a formula or an object of class ergm, theta0 are the parameters

from which the sample is drawn. By default set to a vector of 0.

The number of simulations to use for the MCMC p-values. This is the size of
the sample of graphs to be randomly drawn from the distribution specified by

the object on the set of all graphs.



gof.ergm

GOF

burnin

interval

constraints

control

seed

verbose

Details

39

formula; an R formula object, of the form ~ <model terms> specifying
the statistics to use to diagnosis the goodness-of-fit of the model. They do not
need to be in the model formula specified in formula, and typically are not.
Examples are the degree distribution ("degree"), minimum geodesic distances
("dist"), and shared partner distributions ("espartners" and "dspartners"). For
the details on the possible <model terms>,see ergm-terms.

Number of proposed edge toggles before any MCMC sampling is done. If the
model is correct this can be 0. Currently, there is no support for any check of
the Markov chain mixing, so burnin should be set to a fairly large number.

Number of proposed edge toggles between sampled statistics. The program
prints a warning if too few proposed toggles are being accepted (if the number of
proposed toggles between sampled observations ever equals an integral multiple
of 100*(1+the number of toggles accepted)).

A one-sided formula specifying one or more constraints on the support of the
distribution of the networks being modeled. See the help for similarly-named
argument in ergm for more information. For gof . formula, defaults to un-
constrained. For gof .ergm, defaults to the constraints with which object
was fitted.

A list to control parameters, constructed using gof . formula.control or
gof.ergm.control (which have different defaults).

integer; random number integer seed. Defaults to NULL to use whatever the
state of the random number generater is at the time of the call.

Provide verbose information on the progress of the simulation.

Additional arguments, to be passed to lower-level functions in the future.

A sample of graphs is randomly drawn from the specified model. The first argument is typically the
output of a call to ergm and the model used for that call is the one fit.

A plot of the summary measures is plotted. More information can be found by looking at the
documentation of e rgm.

Value

gof, gof.ergm, and gof.formula return an object of class gofobject. This is a list of the
tables of statistics and p-values. This is typically plotted using plot .gofobject.

See Also

ergm, network, simulate.ergm, summary.ergm, plot.gofobject

Examples

#

data (florentine)

#

# test the gof.ergm function



40

#

gest <- ergm(flomarriage ~ edges +
gest

summary (gest)

#

# Plot the probabilities first
#

gofflo <- gof (gest)

gofflo

#

# Place all three on the same page
# with nice margins

#

par (mfrow=c (1,3))

par (oma=c(0.5,2,1,0.5))

#

plot (gofflo)

#

# And now the odds
#

plot (gofflo, plotlogodds=TRUE)
#

# Use the formula version

#

mcemc.diagnostics.ergm

kstar(2))

plot (gof (flomarriage ~ edges + kstar(2), thetalO=c(-1.6339, 0.0049)))

mcmc.diagnostics.ergm

Conduct MCMC diagnostics on an ergm fit

Description

This function creates simple diagnostic plots for the MCMC sampled statistics produced from a fit.
It also prints the Raftery-Lewis diagnostics, indicates if they are sufficient, and suggests the run

length required.

Usage

## S3 method for class 'ergm':

mcmc.diagnostics (object, sample = "sample", smooth = TRUE,

center = TRUE,

"Iterations",

r = 0.0125, digits = 6, maxplot = 1000, verbose = TRUE
main = "Summary of MCMC samples", xlab
ylab = "", check.degeneracy = TRUE, ...)

Arguments

object An object. See documentation for ergm.

4



mcemc.diagnostics.ergm 41

sample The component of object on which the diagnosis is based. The two usuals
ones are thetasample from the auxilary sample of the natural parameter and
sample the (default) sample of the sufficient statistics from the model.

smooth Draw a smooth line through trace plots

r Percentile of the distribution to estimate

digits Number of digits to print

maxplot Maximum number of statistics to plot

verbose If this is TRUE, print out more information about the MCMC runs including lag
correlations.

center logical; should the samples be centered on the observed statistics.

main Figure title for the diagnostic plots.

xlab X-axis label for diagnostic plots

ylab Y-axis label for diagnostic plots

check.degeneracy
Logical: Should the diagnostics include a check for model degeneracy?

Additional arguments, to be passed to lower-level functions in the future.

Details
The plots produced are a trace of the sampled output and a density estimate for each variable in the
chain.

The Raftery-Lewis diagnostic is a run length control diagnostic based on a criterion of accuracy of
estimation of the quantile q. It is intended for use on a short pilot run of a Markov chain. The number
of iterations required to estimate the quantile q to within an accuracy of +/- r with probability p is
calculated. Separate calculations are performed for each variable within each chain.

In fact, an object contains the matrix of statistics from the MCMC run as component $sample.
This matrix is actually an object of class mcmc and can be used directly in the CODA package to
assess MCMC convergence. Hence all MCMC diagnostic methods available in coda are avail-
able directly. See the examples and http://www.mrc-bsu.cam.ac.uk/bugs/classic/
coda04/readme.shtml.

More information can be found by looking at the documentation of e rgm.

Value

mcmc .diagnostics.ergm returns a matrix of Raftery-Lewis diagnostics.

Details of output

M The number of burn in iterations to be discarded (total over all chains).

N The number of iterations after burn in required to estimate the quantile q to within an accuracy
of +/- r with probability p (total over all chains). The overall number of iterations required (M
+ N).

Total Overall number of iterations required (M + N).


http://www.mrc-bsu.cam.ac.uk/bugs/classic/coda04/readme.shtml
http://www.mrc-bsu.cam.ac.uk/bugs/classic/coda04/readme.shtml

42

memc.diagnostics.ergm

Nmin The minimum required sample size for a chain with no correlation between consecutive
samples. Positive autocorrelation will increase the required sample size above this minimum
value.

I An estimate (the dependence factor) of the extent to which auto-correlation inflates the
required sample size. Values of I larger than 5 indicate strong autocorrelation which may be
due to a poor choice of starting value, high posterior correlations, or st ickiness of the
MCMC algorithm.

Author(s)

Mark S. Handcock, (handcock @stat.washington.edu) based on the coda package and also ideas
from mcgibbsit by Gregory R. Warnes (gregory_r_warnes @ groton.pfizer.com). It is based on
the the R function raftery.diagin coda. raftery.diag, in turn, is based on the FOR-
TRAN program gibbsit written by Steven Lewis which is available from the Statlib archive.

References

Warnes, G.W. (2000). Multi-Chain and Parallel Algorithms for Markov Chain Monte Carlo. Dis-
sertation, Department of Biostatistics, University of Washington,

Raftery, A.E. and Lewis, S.M. (1992). One long run with diagnostics: Implementation strategies
for Markov chain Monte Carlo. Statistical Science, 7, 493-497.

Raftery, A.E. and Lewis, S.M. (1995). The number of iterations, convergence diagnostics and
generic Metropolis algorithms. In Practical Markov Chain Monte Carlo (W.R. Gilks, D.J. Spiegel-
halter and S. Richardson, eds.). London, U.K.: Chapman and Hall.

See Also

ergm, network, coda, mcgibbsit, summary.ergm

Examples

#

data (florentine)

#

# test the mcmc.diagnostics function

#

gest <- ergm(flomarriage ~ edges + kstar(2))
summary (gest)

#

# Plot the probabilities first
#

mcmc.diagnostics (gest)

#

# Use coda directly

#

library (coda)

#

plot (gest$sample, ask=FALSE)
ergm.raftery.diag(gest$sample, r=0.1)



molecule 43

#
# A full range of diagnostics are available
# using codamenu ()

#

molecule Synthetic network with 20 nodes and 28 edges

Description

This is a synthetic network of 20 nodes that is used as an example within the ergm documenta-
tion. It has an interesting elongated shape - reminencent of a chemical molecule. It is stored as a
network object.

Usage

data (molecule)

See Also

florentine, sampson, network, plot.network, ergm

network.update Replaces the sociomatrix in a network object

Description
Replaces the sociomatrix in a network object with the sociomatrix specified by newmatrix. See
ergm for more information.

Usage

network.update (nw, newmatrix, matrix.type=NULL)

Arguments
nw anetwork object. See documentation for the network package.
newmatrix Either an adjacency matrix (a matrix of zeros and ones indicating the presence of

atie from1 to j) or an edgelist (a two-column matrix listing origin and destination
node numbers for each edge; note that in an undirected matrix, the first column
should be the smaller of the two numbers).

matrix.type One of "adjacency" or "edgelist" telling which type of matrix newmatrix is.
Default is to use the which.matrix.type function.



44

Value

network.update returns a network object.

See Also

ergm, network

Examples

#

data (florentine)

#

# test the network.update function

#

# Create a Bernoulli network

rand.net <- network (network.size (flomarriage))

# store the sociomatrix

rand.mat <- rand.net /[, ]

# Update the network

network.update (flomarriage, rand.mat)
# Try this with an edgelist

rand.mat <- as.matrix.network.edgelist (flomarriage) [1:5,]

network.update (flomarriage, rand.mat)

plot.ergm

plot.ergm Plotting Method for class ergm

Description

plot.ergm is the plotting method for ergm objects. It plots the MCMC diagnostics via the
mcme . diagnostics function. See ergm for more information on how to fit these models.

Usage

## S3 method for class 'ergm':
plot(x, ..., mle=FALSE, comp.mat = NULL,
label = NULL, label.col = "black",

xlab, ylab, main, label.cex =
edge.col=1, al = 0.1,

contours=0, density=FALSE, only.subdens

drawarrows=FALSE,

contour.color=1, plotnetwork=FALSE, pie
vertex.col=1, vertex.pch=19, vertex.cex=2,

lwd = 1,

FALSE,

FALSE, piesize=0.

mycol=c ("black", "red", "green", "blue", "cyan",
"magenta", "orange", "yellow", "purple"),

mypch=15:19, mycex=2:10)

07,



plot.ergm

Arguments

X
mle

pie

piesize

contours

45

an R object of class ergm. See documentation for e rgm.
Plots the network using the MLE of the positions for latent models.

For latent clustering models, each node is drawn as a pie chart representing the
probabilities of cluster membership.

The size of the pie charts.

For latent models, plots a contours by contours array of the network with one
contour per network corresponding to the posterior distribution of each of the
nodes.

contour.color

density

only.subdens

drawarrows
plotnetwork
comp.mat

label

label.col
label.cex
xlab

ylab

main
edge.lwd
edge.col
al

vertex.col

vertex.pch

vertex.cex

mycol

mypch

mycex

Color of the contour lines.

If density=TRUE, plots the density of the posterior position of the nodes. If
density=c(nr,nc), plots a nr by nc array of density estimates for each cluster.

If density=c(nr,nc), only plots the densities of the clusters, not the overall den-
sity.

If density=TRUE, draws the ties on the density plot.
If density=c(nr,nc), a plot of the network is also shown.
For latent models, the positions are Procrustes transformed to look like comp.mat.

A vector of the same length as the number of nodes containing the labels of the
nodes.

The color to be used for plotting the labels.
The size of the node labels.

Title for the x axis.

Title for the y axis.

The main title for the network.

The line width for the arrows between nodes.
The color of the arrows between nodes.

The length of the arrow heads.

The color of the nodes as defined by mycol. Can be specified as an attribute of
the network used in the model.

The plotting character of the nodes as defined by mypch. Can be specified as
an attribute of the network used in the model. By default it is 15 - a red square.

The size of the nodes as defined by mycex. Can be specified as an attribute of
the network used in the model.

Vector of colors to be used. Defaults to: c("black","red","green","blue","cyan",

non non "non

"magenta","orange","yellow","purple")
Vector of plotting characters to be used. Defaults to:
Vector of character expansion values.

Other optional arguments to be used by the plot function.



46

Details

Plots the results of an ergm fit.

More information can be found by looking at the documentation of e rgm.

Value

NULL

See Also

ergm, network, plot.network, plot, add.contours

Examples

## Not run:
#

# The example assumes you have the 'latentnet' package installed.

#
# Using Sampson's Monk data, lets fit a
# simple latent position model

#

data (sampson)

#

# Get the group labels
#

samp.labs <- substr(get.vertex.attribute (samplike, "group"),1,1)

#

samp.fit <- ergm(samplike ~ latent (k=2), burnin=10000,
MCMCsamplesize=2000, interval=30)

#

# See if we have convergence in the MCMC

mcmc.diagnostics (samp.fit)

#

# Plot the fit

#

plot (samp.fit, label=samp.labs, vertex.col="group")

#

# Using Sampson's Monk data, lets fit a latent clustering model

#

samp.fit <- ergm(samplike ~ latentcluster (k=2, ngroups=3),

MCMCsamplesize=2000, interval=30)
#
# See if we have convergence in the MCMC
mcmc.diagnostics (samp.fit)
#
# Lets look at the goodness of fit:
#
plot (samp.fit, label=samp.labs, vertex.col="group")
plot (samp.fit, pie=TRUE, label=samp.labs)
plot (samp.fit,density=c(2,2))
plot (samp.fit, contours=5,contour.color="red")

plot.ergm

burnin=10000,



plot.gofobject 47

plot (samp.fit,density=TRUE, drawarrows=TRUE)
add.contours (samp.fit,nlevels=8, lwd=2)

points (samp.fit$Z.mkl, pch=19, col=samp.fit$class)
## End (Not run)

plot.gofobject Plot Goodness-of-Fit Diagnostics on a Exponential Family Random
Graph Model

Description

plot.gofobject plots diagnostics such as the degree distribution, geodesic distances, shared
partner distributions, and reachability for the goodness-of-fit of exponential family random graph
models. See e rgm for more information on these models.

Usage
## S3 method for class 'gofobject':
plot(x, ...,
cex.axis=0.7, plotlogodds=FALSE,
main = "Goodness-of-fit diagnostics",

normalize.reachability=FALSE,
verbose=FALSE)

Arguments
X an object of class gofob ject, typically produced by the gof .ergmorgof . formula
functions. See the documentation for these.
cex.axis Character expansion of the axis labels relative to that for the plot.

plotlogodds Plot the odds of a dyad having given characteristics (e.g., reachability, minimum
geodesic distance, shared partners). This is an alternative to the probability of a
dyad having the same property.

main Title for the goodness-of-fit plots.

normalize.reachability
Should the reachability proportion be normalized to make it more comparable
with the other geodesic distance proportions.

verbose Provide verbose information on the progress of the plotting.

Additional arguments, to be passed to the plot function.

Details
gof .ergm produces a sample of networks randomly drawn from the specified model. This func-
tion produces a plot of the summary measures.

Value

none



48 plot.network.statnet

See Also

gof.ergm, gof.formula, ergm, network, simulate.ergm

Examples

#

data (florentine)

#

# test the gof.ergm function

#

gest <- ergm(flomarriage ~ edges + kstar(2))
gest

summary (gest)

#

# Plot the probabilities first
#

gofflo <- gof (gest)

gofflo

plot (gofflo)

#

# And now the odds

#

plot (gofflo, plotlogodds=TRUE)
#

# Use the formula version

#

gof (flomarriage ~ edges + kstar(2), thetalO=c(-1.6339, 0.0049))

plot.network.statnet
Two-Dimensional Visualization of Networks

Description

plot.network.statnet produces a simple two-dimensional plot of the network object x. A
variety of options are available to control vertex placement, display details, color, etc. The function
is based on the plotting capabilities of the network package with additional pre-processing of
arguments. Some of the capabilites require the 1latentnet package. See plot .network in the
network package for details.

Usage

## S3 method for class 'statnet':
plot.network (x,
attrname=NULL,
label=network.vertex.names (x),
coord=NULL,



plot.network.statnet

jitter=TRUE,
thresh=0,
usearrows=TRUE,
mode="fruchtermanreingold",
displayisolates=TRUE,
interactive=FALSE,
x1lab=NULL,
ylab=NULL,
x1im=NULL,
y1lim=NULL,
pad=0.2,
label.pad=0.5,
displaylabels=FALSE,
boxed.labels=TRUE,
label.pos=0,
label.bg="white",
vertex.sides=8,
vertex.rot=0,
arrowhead.cex=1,
label.cex=1,
loop.cex=1,
vertex.cex=1,
edge.col=1,
label.col=1,
vertex.col=2,
label.border=1,
vertex.border=1,
edge.lty=1,
label.lty=NULL,
vertex.lty=1,
edge.lwd=0,
label.lwd=par ("1lwd"),
edge.len=0.5,
edge.curve=0.1,
edge.steps=50,
loop.steps=20,
object.scale=0.01,
uselen=FALSE,
usecurve=FALSE,
suppress.axes=TRUE,
vertices.last=TRUE,
new=TRUE,
layout.par=NULL,
cex.main=par ("cex.main"),
cex.sub=par ("cex.sub"),
latent.control=1list (maxit=500, trace=0,dyadsample=10000,
penalty.sigma=c(5,0.5), nsubsample=200),
colornames=colors (),

49



50 plot.network.statnet

verbose=FALSE, latent=FALSE,
.)

Arguments

X an object of class network.

attrname an optional edge attribute, to be used to set edge values.

label a vector of vertex labels, if desired; defaults to the vertex labels returned by
network.vertex.names.

coord user-specified vertex coordinates, in an NCOL(dat)x2 matrix. Where this is
specified, it will override the mode setting.

jitter boolean; should the output be jittered?

thresh real number indicating the lower threshold for tie values. Only ties of value
>thresh are displayed. By default, thresh=0.

usearrows boolean; should arrows (rather than line segments) be used to indicate edges?

mode the vertex placement algorithm; this must correspond to a network . layout
function. These include "latent", "latentPrior",and "fruchtermanreingold".

displayisolates

boolean; should isolates be displayed?

interactive boolean; should interactive adjustment of vertex placement be attempted?

xlab x axis label.

ylab y axis label.

x1lim the x limits (min, max) of the plot.

ylim the y limits of the plot.

pad amount to pad the plotting range; useful if labels are being clipped.
label.pad amount to pad label boxes (if boxed . labe1s==TRUE), in character size units.
displaylabels

boolean; should vertex labels be displayed?
boxed.labels boolean; place vertex labels within boxes?

label.pos position at which labels should be placed, relative to vertices. 0 results in labels
which are placed away from the center of the plotting region; 1, 2, 3, and 4
result in labels being placed below, to the left of, above, and to the right of
vertices (respectively); and label . pos>=5 results in labels which are plotted
with no offset (i.e., at the vertex positions).

label.bg background color for label boxes (if boxed. labels==TRUE); may be a vec-
tor, if boxes are to be of different colors.

vertex.sides number of polygon sides for vertices; may be given as a vector or a vertex at-
tribute name, if vertices are to be of different types.

vertex.rot angle of rotation for vertices (in degrees); may be given as a vector or a vertex
attribute name, if vertices are to be rotated differently.

arrowhead.cex
expansion factor for edge arrowheads.



plot.network.statnet

label.cex

loop.cex

vertex.cex

edge.col

label.col

vertex.col

label.border

51

character expansion factor for label text.

expansion factor for loops; may be given as a vector or a vertex attribute name,
if loops are to be of different sizes.

expansion factor for vertices; may be given as a vector or a vertex attribute name,
if vertices are to be of different sizes.

color for edges; may be given as a vector, adjacency matrix, or edge attribute
name, if edges are to be of different colors.

color for vertex labels; may be given as a vector or a vertex attribute name, if
labels are to be of different colors.

color for vertices; may be given as a vector or a vertex attribute name, if vertices
are to be of different colors.

label border colors (if boxed.labels==TRUE); may be given as a vector, if
label boxes are to have different colors.

vertex.border

edge.lty

label.lty

vertex.lty

edge. lwd

label.lwd

edge.len

edge.curve

edge.steps

loop.steps

object.scale

uselen

usecurve

border color for vertices; may be given as a vector or a vertex attribute name, if
vertex borders are to be of different colors.

line type for edge borders; may be given as a vector, adjacency matrix, or edge
attribute name, if edge borders are to have different line types.

line type for label boxes (if boxed . label s==TRUE); may be given as a vec-
tor, if label boxes are to have different line types.

line type for vertex borders; may be given as a vector or a vertex attribute name,
if vertex borders are to have different line types.

line width scale for edges; if set greater than O, edge widths are scaled by
edge . lwdrdat. May be given as a vector, adjacency matrix, or edge attribute
name, if edges are to have different line widths.

line width for label boxes (if boxed.labels==TRUE); may be given as a
vector, if label boxes are to have different line widths.

if uselen==TRUE, curved edge lengths are scaled by edge . len.

if usecurve==TRUE, the extent of edge curvature is controlled by edge . curv.
May be given as a fixed value, vector, adjacency matrix, or edge attribute name,
if edges are to have different levels of curvature.

for curved edges (excluding loops), the number of line segments to use for the
curve approximation.

for loops, the number of line segments to use for the curve approximation.

base length for plotting objects, as a fraction of the linear scale of the plotting
region. Defaults to 0.01.

boolean; should we use edge . 1en to rescale edge lengths?

boolean; should we use edge . curve?

suppress.axes

boolean; suppress plotting of axes?

vertices.last

boolean; plot vertices after plotting edges?



52 plot.network.statnet

new boolean; create a new plot? If new==FALSE, vertices and edges will be added
to the existing plot.

layout.par parameters to the network . layout function specified in mode.
cex.main Character expansion for the plot title.
cex.sub Character expansion for the plot sub-title.
latent.control
A list of parameters to control the latent and latentPrior models, dyadsample

determines the size above which to sample the latent dyads; see ergm and
opt im for details.

colornames A vector of color names that can be selected by index for the plot. By default it
iscolors ().

verbose logical; if this is TRUE, we will print out more information as we run the func-
tion.
latent logical; use a two-dimensional latent space model based on the MLE fit. See

documentation for ergmm () in latentnet.

additional arguments to plot.

Details

plot.network is a version of the standard network visualization tool within the sna library. By
means of clever selection of display parameters, a fair amount of display flexibility can be obtained.
Network layout — if not specified directly using coord — is determined via one of the various
available algorithms. These are (briefly) as follows:

1. latentPrior: Use a two-dimensional latent space model based on a Bayesian minimum
Kullback-Leibler fit. See documentation for latent () in ergm.

2. random: Vertices are placed (uniformly) randomly within a square region about the origin.
3. circle: Vertices are placed evenly about the unit circle.

4. circrand: Vertices are placed in a “Gaussian donut,” with distance from the origin follow-
ing a normal distribution and angle relative to the X axis chosen (uniformly) randomly.

5. eigen, princoord: Vertices are placed via (the real components of) the first two eigenvec-
tors of:

(a) eigen: the matrix of correlations among (concatenated) rows/columns of the adjacency
matrix
(b) princoord: the raw adjacency matrix.
6. mds, rmds, geodist, ad]j, seham: Vertices are placed by a metric MDS. The distance
matrix used is given by:
(a) mds: absolute row/column differences within the adjacency matrix
(b) rmds: Euclidean distances between rows of the adjacency matrix
(c) geodist: geodesic distances between vertices within the network
(d) adj: (max A) — A, where A is the raw adjacency matrix

(e) seham: structural (dis)equivalence distances (i.e., as per sedist in the package sna)
based on the Hamming metric



print.ergm 53

7. spring, springrepulse: Vertices are placed using a simple spring embedder. Param-
eters for the embedding model are given by embedder .params, in the following order:
vertex mass; equilibrium extension; spring coefficient; repulsion equilibrium distance; and
base coefficient of friction. Initial vertex positions are in random order around a circle, and
simulation proceeds — increasing the coefficient of friction by the specified base value per
unit time — until “motion” within the system ceases. If springrepulse is specified, then
an inverse-cube repulsion force between vertices is also simulated; this force is calibrated so
as to be exactly equal to the force of a unit spring extension at a distance specified by the
repulsion equilibrium distance.

Value

None.

Requires

mva

Author(s)

Carter T. Butts (buttsc@uci.edu)

References
Wasserman, S., and Faust, K. (1994). “Social Network Analysis: Methods and Applications.”
Cambridge: Cambridge University Press.

See Also

plot

Examples

data (florentine)

plot (flomarriage) #Plot the Florentine Marriage data
plot (network (10)) #Plot a random network

## Not run: plot (flomarriage, interactive="points")

print.ergm Exponential Random Graph Models

Description

print.ergm is the method used to print an ergm object created by the e rgm function.

Usage

print.ergm (x, digits = max (3, getOption("digits") - 3), ...)



54 samplk

Arguments
be An ergm object. See documentation for ergm.
digits Significant digits for coefficients
Additional arguments, to be passed to lower-level functions in the future.
Details

Automatically called when an object of class ergm is printed. Currently, print .ergm summa-
rizes the number of Newton-Raphson iterations required, the size of the MCMC sample, the theta
vector governing the selection of the sample, and the Monte Carlo MLE.

Value

The value returned is the e rgm object itself.

See Also

network, ergm

Examples

data (florentine)

x <- ergm(flomarriage ~ density)
class (x)
X
samplk Longitudinal networks of positive affection within a monastery as a

“network"” object

Description

Sampson (1969) recorded the social interactions among a group of monks while resident as an
experimenter on vision, and collected numerous sociometric rankings. During his stay, a political
“crisis in the cloister” resulted in the expulsion of four monks (Nos. 2, 3, 17, and 18) and the
voluntary departure of several others - most immediately, Nos. 1, 7, 14, 15, and 16. (In the end,
only 5, 6,9, and 11 remained). Of particular interest is the data on positive affect relations (“liking"),
in which each monk was asked if they had positive relations to each of the other monks.

The data were gathered at three times to capture changes in group sentiment over time: samplkl,
samplk2, and samplk3. They represent three time points in the period during which a new
cohort entered the monastery near the end of the study but before the major conflict began. Each
member ranked only his top three choices on “liking." (Some subjects offered tied ranks for their
top four choices). A tie from monk A to monk B exists if A nominated B as one of his three best
friends at that that time point.

samplk3 is a data set of Hoff, Raftery and Handcock (2002).



sampson 55

See also the data set sampson containing the time-aggregated graph samplike. It is the cumu-
lative tie for “liking" over the three periods. For this, a tie from monk A to monk B exists if A
nominated B as one of his three best friends at any of the three time points.

All graphs are stored as network objects.
This data set is standard in the social network analysis literature, having been modeled by Holland
and Leinhardt (1981), Reitz (1982), Holland, Laskey and Leinhardt (1983), and Fienberg, Meyer,
and Wasserman (1981), Hoff, Raftery, and Handcock (2002), etc. This is only a small piece of the
data collected by Sampson.

Usage

data (samplk)

Source
Sampson, S. F. (1968), A novitiate in a period of change: An experimental and case study of rela-
tionships, Unpublished Ph.D. dissertation, Department of Sociology, Cornell University.
References
White, H.C., Boorman, S.A. and Breiger, R.L. (1976). Social structure from multiple networks. 1.
Blockmodels of roles and positions. American Journal of Sociology, 81(4), 730-780.
See Also

sampson, florentine, network, plot.network, ergm

sampson Cumulative network of positive affection within a monastery as a “net-
work" object

Description

Sampson (1969) recorded the social interactions among a group of monks while resident as an
experimenter on vision, and collected numerous sociometric rankings. During his stay, a political
“crisis in the cloister” resulted in the expulsion of four monks (Nos. 2, 3, 17, and 18) and the
voluntary departure of several others - most immediately, Nos. 1, 7, 14, 15, and 16. (In the end,
only 5, 6,9, and 11 remained). Of particular interest is the data on positive affect relations (“liking"),
in which each monk was asked if they had positive relations to each of the other monks.

The data were gathered at three times to capture changes in group sentiment over time. They
represent three time points in the period during which a new cohort entered the monastery near
the end of the study but before the major conflict began. Each member ranked only his top three
choices on “liking." (Some subjects offered tied ranks for their top four choices). A tie from monk
A to monk B exists if A nominated B as one of his three best friends at that that time point.

samplike is the time-aggregated graph. It is the cumulative tie for “liking" over the three periods.
For this, a tie from monk A to monk B exists if A nominated B as one of his three best friends at
any of the three time points.



56 simulate.ergm

All graphs are stored as network objects.

This data set is standard in the social network analysis literature, having been modeled by Holland
and Leinhardt (1981), Reitz (1982), Holland, Laskey and Leinhardt (1983), and Fienberg, Meyer,
and Wasserman (1981), Hoff, Raftery, and Handcock (2002), etc. This is only a small piece of the
data collected by Sampson.

Usage

data (sampson)

Source

Sampson, S. F. (1968), A novitiate in a period of change: An experimental and case study of rela-
tionships, Unpublished Ph.D. dissertation, Department of Sociology, Cornell University.

References

White, H.C., Boorman, S.A. and Breiger, R.L. (1976). Social structure from multiple networks. I.
Blockmodels of roles and positions. American Journal of Sociology, 81(4), 730-780.

See Also

florentine, network, plot.network, ergm

simulate.ergm Draw from the distribution of an Exponential Family Random Graph
Model

Description

simulate is used to draw from exponential family random network models in their natural pa-
rameterizations. See e rgm for more information on these models.

Usage

## S3 method for class 'formula':
simulate (object, nsim=1, seed=NULL, ..., thetaO,
burnin=1000, interval=1000,
basis=NULL,
sequential=TRUE,
constraints = ~.,
control = simulate.formula.control (),
verbose=FALSE)
## S3 method for class 'ergm':
simulate (object, nsim=1, seed=NULL, ..., thetaO,
burnin=1000, interval=1000,
sequential=TRUE,
constraints = NULL,



simulate.ergm

Arguments

object

nsim

seed

thetal

burnin

interval

basis

constraints

control

sequential

verbose

57

control = simulate.ergm.control (),
verbose=FALSE)

an R object. Either a formula or an ergm object. The formula should
be of the form y ~ <model terms>, where y is a network object or a ma-
trix that can be coerced to a network object. For the details on the possible
<model terms>, see ergm—terms. To create a network object in R, use
the network () function, then add nodal attributes to it using the $v% operator
if necessary.

Number of networks to be randomly drawn from the given distribution on the
set of all networks, returned by the Metropolis-Hastings algorithm.

Random number integer seed. The defaultis sample (10000000, size=1).

For Bernoulli networks this is the log-odds of a tie, however it is only used if
prob is not specified. When given either a formula or an object of class
ergm, thetaO are the parameters from which the sample is drawn.

The number of proposed proposals before any MCMC sampling is done. Cur-
rently, there is no support for any check of the Markov chain mixing, so burnin
should be set to a fairly large number.

The number of proposals between sampled statistics. The program prints a
warning if too few proposals are being accepted (if the number of proposals
between sampled observations ever equals an integral multiple of 100(1+the
number of proposals accepted)).

An optional network object to start the MCMC algorithm from. This is used

only if a network object s not specified on the right-hand-side of the formula.

If neither is specified an error is given as it is used to specify the nature of the
network requested (e.g., size and directionality).

A one-sided formula specifying one or more constraints on the support of the
distribution of the networks being simulated. See the documentation for a sim-
ilar argument for e rgm for more information. For simulate. formula, de-
faults to no constraints. For simulate .ergm, defaults to using the same con-
straints as those with which ob ject was fitted.

A list of control parameters for algorithm tuning. Constructed using simulate.

or simulate.formula.control, which have different defaults.

Should the returned draws use the prior draw as the starting network or always
use the initially passed network? For random draws the results should be simi-
lar (stochastically), but the sequent ial=TRUE option is useful for dynamic
draws.

If this is TRUE, we will print out more information as we run the program,
including (currently) some goodness of fit statistics.

further arguments passed to or used by methods.

ergm.control



58 simulate.ergm

Details

A sample of networks is randomly drawn from the specified model. The model is specified by the
first argument of the function. If the first argument is a formula then this defines the model. If
the first argument is the output of a call to e rgm then the model used for that call is the one fit - and
unless theta0 is specified, the sample is from the MLE of the parameters. If neither of those are
given as the first argument then a Bernoulli network is generated with the probability of ties defined
by prob or theta0.

Note that the first network is sampled after burnin + interval steps, and any subsequent net-
works are sampled each interval steps after the first.

More information can be found by looking at the documentation of ergm.

Value

simulate returns an object of class network. series that is a list consisting of the following

elements:
formula The formula used to generate the sample.
networks A list of the generated networks.
stats The n X p matrix of network change statistics, where n is the sample size and p
is the number of network change statistics specified in the model.
See Also

ergm, network, print.network

Examples

#
# Let's draw from a Bernoulli model with 16 nodes
# and density 0.5 (i.e., theta0 = c(0,0))

#

g.sim <- simulate (network (16) ~ edges + mutual)
#

# What are the statistics like?

#

summary (g.sim ~ edges + mutual)

#

# Now simulate a network with higher mutuality
#

g.sim <- simulate (network (16) ~ edges + mutual, thetalO=c(0,2))
#

# How do the statistics like?

#

summary (g.sim ~ edges + mutual)

#

# Let's draw from a Bernoulli model with 16 nodes
# and tie probability 0.1

#

g.use <- network (16,density=0.1,directed=FALSE)

#



simulate.ergm.control 59

Starting from this network let's draw 5 realizations
of a edges and 2-star network

.sim <- simulate (~edgestkstar (2),nsim=5,thetal0=c(-1.8,0.03),
basis=g.use,
burnin=100000, interval=1000)

.sim

attach the Florentine Marriage data

H F#H H= Q

data (florentine)

#

# fit an edges and 2-star model using the ergm function
#

gest <- ergm(flomarriage ~ edges + kstar(2))

summary (gest)

#

# Draw from the fitted model

#

g.sim <- simulate (gest,nsim=100,burnin=1000, interval=1000)
g.sim

simulate.ergm.control
Auxiliary for Controlling ERGM Simulation

Description

Auxiliary function as user interface for fine-tuning ERGM simulation.

Usage

simulate.formula.control (prop.weights = "default", prop.args = NULL,
drop = FALSE, summarizestats = FALSE, maxchanges = 1le+06, parallel=0)

simulate.ergm.control (prop.weights = NULL, prop.args = NULL, drop = FALSE, summari:

Arguments

prop.weights Specifies the method to allocate probabilities of being proposed to dyads. For
the simulate. formula variant, defaults to "default", which picks a rea-
sonable default for the specified constraint. For simulate.ergm variant, de-
faults to NULL, to reuse the weights with which the given ergm.object was
fitted. Other possible values are "TNT", "random", and "nonobserved",
though not all values may be used with all possible constraints.

prop.args An alternative, direct way of specifying additional arguments to proposal.

drop logical; Should the degenerate terms in the model be dropped from the fit? If
statistics occur on the extreme of their range they correspond to infinite param-
eter estimates. Default is FALSE.



60 summary.ergm

summarizestats

logical; Print out a summary of the sufficient statistics of the generated network.
This is useful as a diagnostic. Default is FALSE.

maxchanges Maximum number of changes in dynamic network simulation for which to allo-
cate space.

parallel Number of threads in which to run the sampling.

Value

A list with arguments as components.

References

simulate.formula, simulate.ergm, glm.control performs a similar function for glm

See Also

simulate.ergm, simulate.formula, glm.control performs a similar function for glm

summary .ergm Summarizing ERGM Model Fits

Description

summary method for class "ergm".

Usage
## S3 method for class 'ergm':
summary (object, ..., check.degeneracy = FALSE,
correlation = FALSE, covariance = FALSE)
Arguments
object an object of class "ergm", usually, a result of a call to ergm.

check.degeneracy
Logical: Should the output include a check for model degeneracy?

correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned
and printed.

covariance logical; if TRUE, the covariance matrix of the estimated parameters is returned
and printed.

further arguments passed to or from other methods.

Details

summary . ergm tries to be smart about formatting the coefficients, standard errors, etc.



summary.gofobject 61

Value
The function summary . ergm computes and returns a list of summary statistics of the fitted ergm
model given in object.

See Also

network, ergm, print.ergm. The model fitting function ergm, summary.

Function coe f will extract the matrix of coefficients with standard errors, t-statistics and p-values.

Examples

data (florentine)

x <- ergm(flomarriage ~ density)
summary (x)

summary.gofobject Summaries the Goodness-of-Fit Diagnostics on a Exponential Family
Random Graph Model

Description

summary .gofobject summaries the diagnostics such as the degree distribution, geodesic dis-
tances, shared partner distributions, and reachability for the goodness-of-fit of exponential family
random graph models. See e rgm for more information on these models.

Usage

## S3 method for class 'gofobject':
summary (object, ...)

Arguments
object an object of class gofob ject, typically produced by the gof .ergmor gof. formula
functions. See the documentation for these.
Additional arguments, to be passed to the plot function.
Details

gof .ergm produces a sample of networks randomly drawn from the specified model. This func-
tion produces a print out the summary measures.

Value

none



summary.statistics

See Also

gof.ergm, gof.formula, ergm, network, simulate.ergm

Examples

#

data (florentine)

#

# test the gof.ergm function

#

gest <- ergm(flomarriage ~ edges + kstar(2))
gest

summary (gest)

#

# Plot the probabilities first
#

gofflo <- gof (gest)

gofflo

summary (gofflo)

summary.statistics Calculation of network or graph statistics

Description

Used to calculate the specified statistics for an observed network if its argument is a formula for an
ergm. See ergm—terms for more information on the statistics that may be specified.

Usage
## S3 method for class 'formula':
summary.statistics (object, ..., drop=FALSE, basis=NULL)
## S3 method for class 'ergm':
summary.statistics (object, ..., drop=FALSE, basis=NULL)
Arguments
object an R object. Itis either an R formula object (see above) or an e rgm model ob-

drop

ject. In the latter case, summary.statisticsiscalled forthe object$formula
object. In the former case, object is of the form y ~ <model terms>,
where y is a network object or a matrix that can be coerced to a network
object. For the details on the possible <model terms>, see ergm-terms.

To create a network objectin R, use the network () function, then add nodal
attributes to it using the $v% operator if necessary.

logical: Should terms whose observed statistics are extreme among the set of all
possible network statistics (which result in nonexistent MLEs) be dropped?



summary.statistics 63

basis An optional network object relative to which the global statistics should be
calculated.

further arguments passed to or used by methods.

Details

If object isof class formula, then summary may be used in lieu of summary.statistics
because summary . formula calls the summary.statistics function. The function actually
cumulates the change statistics when removing edges from the observed network one by one until
the empty network results. Since each model term has a prespecified value (zero by default) for the
corresponding statistic(s) on an empty network, these change statistics give the absolute statistics
on the original network.

Value

A vector of statistics measured on the network.

See Also

ergm, network, ergm-terms

Examples
#
# Lets look at the Florentine marriage data
#
data (florentine)
#
# test the summary.statistics function
#
summary (flomarriage ~ edges + kstar(2))
m <- as.matrix(flomarriage)
summary (m ~ edges) # twice as large as it should be

summary (m ~ edges, directed=FALSE) # Now it's correct



Index

*Topic classes
as.network.numeric, 4
+Topic datasets
faux.magnolia.high, 30
faux.mesa.high, 31
flobusiness, 33
flomarriage, 34
florentine, 35
g4, 36
molecule, 42
samplk, 54
sampson, 55
+Topic graphs
as.network.numeric, 4
ergmuserterms—-package, 29
plot.gofobject, 46
plot.network.statnet, 48
summary.gofobject, 61
+Topic hplot
plot.network.statnet, 48
*Topic internal
statnet—-internal, 6
*Topic models
anova.ergm, 2
coef.ergm, 5
ergm, 19
ergm-package, 6
ergm-terms, 8
ergm.control, 26
Getting.Started, 1
gof.ergm, 37
gof.ergm.control, 36
mcmc .diagnostics.ergm, 40
network.update, 43
plot.ergm, 44
print.ergm, 53
simulate.ergm, 56
simulate.ergm.control, 59
summary .ergm, 60

64

summary.statistics, 62
xTopic package

ergm-package, 6

Getting.Started, 1
xTopic regression

anova.ergm, 2

coef.ergm,5

summary .ergm, 60

anova, 3

anova.ergm, 2

anova.ergmlist,3
anova.ergmlist (anova.ergm),2
as.directed (statnet-internal), 6
as.edgelist (statnet—-internal), 6
as.network.numeric, 4,4

coda, 41, 42

coef, 60

coef.ergm,5

coefficients.ergm(coef.ergm),5

ConstraintImplications
(statnet—-internal), 6

degreedist (statnet-internal), 6
degreedistfactor
(statnet-internal), 6
drawcircle (statnet-internal), 6
drawpie (statnet—internal), 6
dspartnerdist (statnet—-internal),

6

ergm, -3, 5-8, 19, 19-22, 26, 29, 31-33,
37-46, 51-53, 56, 57, 60-62

ergm-terms, 19, 21, 29, 38, 56, 62

ergm-package, 6

ergm-terms, 8

ergm.boundDeqg (statnet—-internal),
6

ergm.checkargs
(statnet—-internal), 6



INDEX

ergm.

ergm.

ergm

ergm.

ergm.
.Cprepare (statnet-internal),

ergm

ergm.
.degeneracy

ergm

ergm.
ergm.
ergm.
ergm.

ergm.

ergm.
.geodesicmatrix

ergm

ergm.
.geodistdist

ergm

ergm.

ergm.

ergm.

ergm

ergm.

ergm.

ergm.

ergm

ergm.

ergm.

checkbipartite
(statnet—internal), 6

checkdegeneracy
(statnet—-internal), 6

.checkdirected

(statnet—-internal), 6
compute.degeneracy

(statnet—-internal), 6
control, 20, 26

6
curved (statnet—-internal), 6

(statnet—-internal), 6
degenerate
(statnet—-internal), 6
estimate (statnet—-internal),
6
eta(statnet—-internal), 6
etagrad (statnet—internal), 6
etagradmult
(statnet—-internal), 6
etamap (statnet-internal), 6

(statnet—-internal), 6
geodist (statnet—-internal), 6

(statnet—-internal), 6
geodistn (statnet-internal),
6
getMCMCsample
(statnet—-internal), 6

getmodel (statnet-internal),
6

.getnetwork

(statnet—internal), 6
gettermnames
(statnet—-internal), 6
getterms (statnet—-internal),
6
independencemodel
(statnet—internal), 6

.initialfit

(statnet—internal), 6
logisticdeviance
(statnet—-internal), 6

logitreg(statnet-internal),
6

65

ergm.mainfitloop
(statnet—-internal), 6
ergm.mainloop (statnet—-internal),
6
ergm.marquardt
(statnet—-internal), 6
ergm.marquardt?2
(statnet—-internal), 6
ergm.MCMCacf (statnet—-internal), 6
ergm.MCMCse (statnet-internal), 6
ergm.mple (statnet—-internal), 6
ergm.nodegeodesics
(statnet—internal), 6
ergm.object, 37, 59
ergm.pairgeodesic
(statnet—-internal), 6
ergm.pen.glm(statnet—-internal), 6
ergm.phasel?2 (statnet—internal), 6
ergm.raftery.diag
(statnet-internal), 6
ergm.revisethetal
(statnet—-internal), 6
ergm.rhs.formula
(statnet—-internal), 6
ergm.robmon (statnet-internal), 6
ergm.statseval
(statnet—-internal), 6
ergm.stocapprox
(statnet—-internal), 6
ergm.sufftoprob
(statnet—-internal), 6
ergm.t.summary
(statnet—-internal), 6
ergm.terms (ergm—terms), 8
ergmuserterms
(ergmuserterms—-package), 29
ergmuserterms—-package, 29
espartnerdist (statnet-internal),

6

faux.magnolia.high, 30
faux.mesa.high, 31

fauxhigh (faux.mesa.high), 31
fitted.values,6
flobusiness, 33, 33, 35
flomarriage, 34, 34, 35
florentine, 35
formula, 19, 21, 29, 56, 57, 62
fulldistdist (statnet-internal), 6



66

fullgcount (statnet—-internal), 6

g4, 36

get.node.attr (statnet-internal),
6

Getting.Started, 1

glm, 6, 29, 37, 59

glm.control, 29, 37, 59

gof, 37,39

gof (gof.ergm), 37

gof.ergm, 37,37,39,47,61

gof.ergm.control, 36, 38

gof.formula, 37, 39,47, 61

gof.formula.control, 38

gof.formula.control
(gof.ergm.control), 36

InitConstraint.bd
(statnet—internal), 6
InitConstraint.degreedist
(statnet—-internal), 6
InitConstraint.degrees
(statnet—-internal), 6
InitConstraint.edges
(statnet—-internal), 6
InitConstraint.hamming
(statnet—internal), 6
InitConstraint.indegreedist
(statnet—internal), 6
InitConstraint.nodedegrees
(statnet—-internal), 6
InitErgm.absdiff
(statnet—-internal), 6
InitErgm.absdiffcat
(statnet—-internal), 6
InitErgm.altkstar
(statnet—-internal), 6
InitErgm.asymmetric
(statnet—-internal), 6
InitErgm.blconcurrent
(statnet—-internal), 6
InitErgm.bldegree
(statnet—-internal), 6
InitErgm.blfactor
(statnet—internal), 6
InitErgm.blstar
(statnet—internal), 6
InitErgm.b2concurrent
(statnet—-internal), 6

INDEX

InitErgm.b2degree
(statnet—-internal), 6
InitErgm.b2factor
(statnet—-internal), 6
InitErgm.b2star
(statnet—-internal), 6
InitErgm.balance
(statnet—-internal), 6
InitErgm.bounded.degree
(statnet—-internal), 6
InitErgm.bounded.idegree
(statnet—-internal), 6
InitErgm.bounded.istar
(statnet—-internal), 6
InitErgm.bounded.kstar
(statnet—-internal), 6
InitErgm.bounded.odegree
(statnet—-internal), 6
InitErgm.bounded.ostar
(statnet—internal), 6
InitErgm.bounded.triangle
(statnet—-internal), 6
InitErgm.concurrent
(statnet—-internal), 6
InitErgm.ctriad
(statnet—internal), 6
InitErgm.ctriple
(statnet—-internal), 6
InitErgm.cycle
(statnet—-internal), 6
InitErgm.degree
(statnet—internal), 6
InitErgm.density
(statnet—-internal), 6
InitErgm.dsp(statnet-internal), 6
InitErgm.dyadcov
(statnet—-internal), 6
InitErgm.edgecov
(statnet—-internal), 6
InitErgm.edges
(statnet—-internal), 6
InitErgm.esp (statnet-internal), 6
InitErgm.gwbldegree
(statnet-internal), 6
InitErgm.gwb2degree
(statnet—-internal), 6
InitErgm.gwdegree
(statnet—-internal), 6



INDEX

InitErgm.gwdsp
(statnet—internal), 6
InitErgm.gwesp
(statnet—-internal), 6
InitErgm.gwidegree
(statnet—-internal), 6
InitErgm.gwodegree
(statnet—-internal), 6
InitErgm.hamming
(statnet—-internal), 6
InitErgm.hammingdyadcov
(statnet—internal), 6
InitErgm.hammingfixmix
(statnet—-internal), 6
InitErgm.hammingmix
(statnet—-internal), 6
InitErgm.idegree
(statnet—-internal), 6
InitErgm.intransitive
(statnet—-internal), 6
InitErgm.isolates
(statnet—internal), 6
InitErgm.istar
(statnet—-internal), 6
InitErgm.kstar
(statnet—-internal), 6
InitErgm.localtriangle
(statnet—internal), 6
InitErgm.m2star
(statnet—-internal), 6
InitErgm.match
(statnet—-internal), 6
InitErgm.meandeg
(statnet—-internal), 6

InitErgm.mix (statnet-internal), 6

InitErgm.mutual
(statnet—internal), 6
InitErgm.nearsimmelian
(statnet—-internal), 6
InitErgm.nodecov
(statnet—internal), 6
InitErgm.nodefactor
(statnet—-internal), 6
InitErgm.nodeifactor
(statnet—-internal), 6
InitErgm.nodemain
(statnet—internal), 6
InitErgm.nodematch

(statnet—-internal), 6
InitErgm.nodemix
(statnet—internal), 6
InitErgm.nodeofactor
(statnet—-internal), 6
InitErgm.odegree
(statnet—-internal), 6
InitErgm.ostar
(statnet—-internal), 6
InitErgm.receiver
(statnet—-internal), 6
InitErgm.receivercov
(statnet—-internal), 6
InitErgm.sender
(statnet—-internal), 6
InitErgm.sendercov
(statnet—-internal), 6
InitErgm.simmelian
(statnet—-internal), 6
InitErgm.simmelianties
(statnet—internal), 6
InitErgm.smalldiff
(statnet—-internal), 6
InitErgm.sociality
(statnet-internal), 6
InitErgm.transitive
(statnet—-internal), 6
InitErgm.triadcensus
(statnet—-internal), 6
InitErgm.triangle
(statnet—-internal), 6
InitErgm.triangles
(statnet—-internal), 6
InitErgm.tripercent
(statnet—-internal), 6
InitErgm.ttriad
(statnet—-internal), 6
InitErgm.ttriple
(statnet—-internal), 6
InitErgm.twopath
(statnet—-internal), 6
InitMHP.CondDegree
(statnet—-internal), 6
InitMHP.CondDegreeDist
(statnet—-internal), 6
InitMHP.CondInDegreeDist
(statnet—-internal), 6
InitMHP.ConstantEdges

67



68

(statnet—-internal), 6
InitMHP.dissolution
(statnet—internal), 6
InitMHP. formation
(statnet—-internal), 6
InitMHP.formationTNT
(statnet—-internal), 6
InitMHP.HammingConstantEdges
(statnet—-internal), 6
InitMHP.HammingTNT
(statnet—internal), 6
InitMHP.nobetweengroupties
(statnet—internal), 6
InitMHP.randomtoggle
(statnet—-internal), 6
InitMHP.randomtoggleNonObserved
(statnet—-internal), 6
InitMHP.TNT (statnet—-internal), 6
InitMHP.TNT10 (statnet-internal),
6
is.ergm(statnet-internal), 6
is.invertible (statnet—-internal),
6
is.latent (statnet-internal), 6
is.matrixnetwork
(statnet—-internal), 6

latentnet, 48, 51

1lik.fun (statnet-internal), 6

11lik.fun2 (statnet-internal), 6

11lik.fun3 (statnet-internal), 6

llik.grad(statnet-internal), 6

llik.grad2 (statnet-internal), 6

llik.grad3 (statnet-internal), 6

llik.hessian(statnet—-internal), 6

llik.hessian2 (statnet-internal),
6

1lik.info3 (statnet-internal), 6

llik.mcmcvar3 (statnet—-internal),
6

im, 6

logistftest (statnet—-internal), 6

mcgibbsit, 41, 42

mcme .diagnostics, 44

mcmc.diagnostics
(mcmc.diagnostics.ergm), 40

mcmc.diagnostics.default
(statnet—-internal), 6

INDEX

mcme .diagnostics.ergm, 40, 41
MHproposal (statnet—internal), 6
MHproposals (statnet—-internal), 6
midarrow (statnet—-internal), 6
mixingmatrix (statnet-internal), 6
molecule, 42

network, 2,4, 5,7, 8, 19, 30-36, 42, 43, 48,
49, 54-57, 62
network.update, 43, 43
network.vertex.names, 49
newnw.extract (statnet—-internal),

6

optim, 27,51
ostar2deg (statnet-internal), 6

plot, 51,53
plot.ergm, 44, 44
plot.gofobject, 39, 46, 46
plot.mcmc.ergm
(statnet—-internal), 6
plot.network, 31, 33,48, 52
plot.network.ergm
(plot.network.statnet), 48
plot.network.series
(plot.network.statnet), 48
plot.network.statnet, 48, 48
print.ergm, 21,53, 53
print.gofobject
(summary.gofobject), 61
print .mixingmatrix
(statnet—-internal), 6
print.network.series
(statnet—-internal), 6
print.raftery.diag.ergm
(statnet—-internal), 6
print.summary.ergm
(statnet—-internal), 6

residuals, 6

robust.inverse
(statnet—-internal), 6

rspartnerdist (statnet-internal),
6

samplike (sampson), 55
samplk, 54
samplkl (samplk), 54



INDEX

samplk?2 (samplk), 54
samplk3 (samplk), 54
sampson, 54, 55
set.mfrow (statnet—internal), 6
simulate, 56, 57
simulate.control
(statnet—-internal), 6
simulate.ergm, 37,56, 59
simulate.ergm.control, 57,59
simulate.formula, 37, 59
simulate.formula (simulate.ergm),
56
simulate.formula.control, 57
simulate.formula.control
(simulate.ergm.control), 59
sna, 52
sociality (statnet-internal), 6
statnet, 29
statnet—-internal, 6
sufftoprob (statnet—-internal), 6
summary, 60, 62
summary (summary.statistics), 62
summary.ergm, 21, 42, 60, 60
Summary.ergm. future
(statnet—-internal), 6
summary.gofobject, 61, 61
summary.network.series
(statnet-internal), 6
summary.statistics, 62
summary.statistics.ergm
(summary.statistics), 62
summary.statistics.formula
(summary.statistics), 62
summary.statistics.matrix
(summary.statistics), 62
summary.statistics.network
(summary.statistics), 62
summary.statsmatrix.ergm
(statnet—-internal), 6

terms—-ergm (ergm-terms), 8
terms.ergm(ergm—-terms), 8
traceplot.ergm
(statnet—internal), 6
twopathdist (statnet-internal), 6

which.matrix.type, 43



	Getting.Started
	anova.ergm
	as.network.numeric
	coef.ergm
	statnet-internal
	ergm-package
	ergm-terms
	ergm
	ergm.control
	ergmuserterms-package
	faux.magnolia.high
	faux.mesa.high
	flobusiness
	flomarriage
	florentine
	g4
	gof.ergm.control
	gof.ergm
	mcmc.diagnostics.ergm
	molecule
	network.update
	plot.ergm
	plot.gofobject
	plot.network.statnet
	print.ergm
	samplk
	sampson
	simulate.ergm
	simulate.ergm.control
	summary.ergm
	summary.gofobject
	summary.statistics
	Index

