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Chapter 1

Introduction

This manual is meant to provide an introduction to using icenReg to ana-
lyze interval censored data. It is written with expectation that the reader is
familiar with basic survival analysis methods. Familiarity with the Kaplan
Meier curves and Cox proportional hazards model should be sufficient.

1.1 Interval Censoring

Interval censoring occurs when a response is known only up to an interval.
A classic example is testing for diseases at a doctor’s clinic; if a subject
tests negative at t; and positive at t3, all that is known is that the subject
acquired the disease in (t1, t2), rather than an exact time. Other classic
examples include examining test mice for tumors after sacrifice (results in
current status or case I interval censored data, in which all observations are
either left or right censored, as opposed to the more general case II, which
allows for any interval), customer choice models in economics (customers
are presented a price for a product and chose to purchase or not, researcher
wants to know distribution of maximum spending amount; this results in
current status data again), data reduction methods for sensor analyses (to
reduce load on sensor system, message is intentionally surpressed if outcome
is in an expected region) and data binning (responses reported only up to
an interval, in some cases to keep the subjects anonymous, in some cases to
reduce size of data).

Often interval censoring is ignored in analysis. For example, age is usu-
ally reported only up to the year, rather than as a continuous variable; when
a subject reports that their age is 33, the information we have is really that
their age is in the interval [33,34). In the case that these intervals are very



short relative to the question of interest, such as with reported age when the
scientific quesiton is about age of onset of type II diabetes, the bias intro-
duced by ignoring the interval censoring may be small enough to be safely
ignored. However, in the case that the width of intervals is non-trivial,
statistical methods that account for this should be used for reliable analysis.

Standard notation for interval censoring is that each observation contains
a response interval [l;,7;] such that the true event time is known to have
occurred within. Note that this allows for uncensored observations (I; = 7;),
right censored (r; = 00), left censored (I; = 0) or none of the above (0 <
I <r < OO)

In icenReg, the response value is allowed to be interval censored. If
our data contains the values L and R, representing the left and right sides of
the response interval, we can pass our response to a regression model using
either

cbind(L, R)
Surv(L, R, type = "interval2")

It is worth nothing that other R packages, specifically for non-parametric
estimation, allow you to declare whether the response intervals are open,
closed or a combination of partially opened, for example [l;,7;). In icenReg,
it is always assumed that the intervals are closed.

1.2 Classic Estimators

The topic of interval censoring began in the field of survival analysis. Al-
though it is now considered in other fields of study (such as tobit regression),
at this time icenReg focusses on survival models.

One of the earliest models is the Non-Parametric Maximum Likelihood
Estimator (NPMLE), also referred to as Turnbull’s Estimator. This is a
generalization of the Kaplan Meier curves (which is a generalization of the
empirical distribution function) that allows for interval censoring. Unlike
the Kaplan Meier curves, the solution is not in closed form and several algo-
rithms have been proposed for efficient computation. A special topic regard-
ing the NPMLE is the bivariate NPMLE; this is for the special case of two
interval censored outcomes, in which the researcher wants a non-parametric
estimator of the joint distribution. This is especially computationally intense
as the number of parameters can be up to n?.



Semi-parametric models exist in the literature as well; two classic re-
gression models fit by icenReg are the Cox-PH model and the proportional
odds model. The well known Cox-PH, or proportional hazards regression
model, has the property that

h(t1X, B) = ho(t)eX"?

where h(t|X, ) is the hazard rate conditional on covariates X and re-
gression parameters 5, with h, as the baseline hazard function. This relation
is equivalent to
eXTh

S(tX,8) = So(t)

where S(t|.X, 8) is the conditional survival and S,(t) is the baseline sur-
vival function.

The less known proportional odds model can be expressed as

0dds(S(t|X, 8)) = X P0dds(S, (1))

or
SHX,B)  _ xrs So(t)

1=SEUX.8) " 1-5,0)

Unlike the special example of the Cox PH model with right-censored
data, the baseline parameters must be estimated concurrently with the re-
gression parameters. The model can be kept semi-parametric (i.e. no need
to decide on a parametric baseline distribution) by using the Turnbull esti-
mator, modified to account for the given regression model, as the baseline
distribution. The semi-parametric model can be computationally very diffi-
cult, as the number of baseline parameters can be quite high (up to n), which
must follow shape constraints (i.e. either a set of probability masses or a
cumulative hazard function, which must be strictly increasing) and there is
no closed form solution to either regression or baseline parameters.

Fully parametric models exist as well and can be calculated using fairly
standard algorithms. There are slight complications in that the interval cen-
soring can cause the log likelihood function to be non-concave. However, for
reasonable sized data, the log likelihood function is usually locally concave
near the mode and only slight modifications are required to address this
issue. In practice, fully-parametric models should be used with caution; the
lack of observed values means that model inspection can be quite difficult;
there are no histograms, etc., to be made. As such, even if fully paramet-
ric models are to be used for the final analysis, it is strongly encouraged



to use semi-parametric models at least for model inspection. icenReg fits
both fully parametric proportional odds and proporitonal hazard models for
interval censored data.

Another common regression model for survival data is the accelerated
failure time model (AFT). At this time, this option is not available for
interval censored data. However, this model can be fit for interval censored
data using survival’s survreg function.

1.3 Models fit with icenReg

At this time, the following set of models can be fit (name in paratheses is
function call in icenReg):

e NPMLE (ic_sp can fit univariate NPMLE, ICNPMLE can fit univariate
or bivariate NPMLE)

e Semi-parametric model (ic_sp, with options model = "ph" for por-
portional hazards, "po" for proportional odds)

e Fully parametric model (ic_par, in additon to model option, also have
a choice of dist, with options "exponential", "gamma", "weibull",
"lnorm", "loglogistic" and "generalgamma")

In addition, icenReg includes various diagnostic tools. These include

e Plots for diagnosising baseline distribution (diag_baseline)
e Plots for diagnosising covariate effects (diag_covar)

e Cross validation via multiple imputations (icenReg_cv)

1.4 Data Examples in icenReg

The package includes 4 sources of example data: two functions that simulate
data and two sample data sets. The simulation functions are simIC_weib,
which simulates interval censored regression data with a Weibull baseline
distribution and simBVCen, which simulates bivariate interval censored data.
The sample data sets are miceData, which contains current status data
regarding lung tumors from two groups of mice and essIncData, which
includes data from the European Social Survey. In this case, wages were only
recorded up to an interval to protect the identity of the subjects. The dataset



essIncData_small is a smaller subset of essIncData (n = 500 instead of
6,712), which is used in many of the examples only so that CRAN’s testing
of the package runs quicker. In practice, using all these models on n = 6,712
is trival to do, rarely taking more than a few seconds even on a slower laptop.



Chapter 2

Fitting Models using icenReg

An important note about icenReg is that in all models, it is assumed that
the response interval is closed, i.e. the event is known to have occurred
within [tq, t2], compared with [t1,t2), (t1,%2), etc. This is of no consequence
for fully parametric models, but does mean the solutions may differ some-
what in comparison with semi- and non-parametric models that allow dif-
ferent configurations of open and closed response intervals.

2.1 Non-parametric models

As noted earlier, for univariate interval censored data, the model may be fit
with either ic_sp or ICNPMLE. For large datasets (i.e. n > 50,000), ic_sp will
become faster than ICNPMLE. In addition, ic_sp can readily be provided to
the plot method. For bivariate data, ICNPMLE is currently the only choice.

If the data set is relatively small and the user is interested in non-
parametric tests, such as the log-rank statistic, we actually advise using
the interval package, as this provides several testing functions. However,
icenReg is several fold faster than interval, so if large datasets are used
(i.e. n > 1,000), the user may have no choice but to use icenReg.

To fit an NPMLE model for interval censored data, we will consider the
miceData provided in icenReg. This dataset contains three variables: 1, u
and grp. 1 and u represent the left and right side of the interval containing
the event time (note: data is current status) and grp is a group indicator
with two categories.

If we separate the data into two datasets, i.e.

ge.data <- miceData[miceData$grp == "ge", ]



ce.data <- miceDatal[miceData$grp == "ce", ]

We can then fit the NPMLE by calling the interval censored semi-
parametric model, but supplying no covariates. This can be done by

ge.fit <- ic_sp(cbind(1l, u) ~ 0, data
ce.fit <- ic_sp(cbind(1l, u) ~ 0, data

ge.data)
ce.data)

Because the objects returned by ic_sp are intended to describe semi-
parametric models and thus focus on the regression parameters. For the
NPMLE, we need the information about the survival curve. We can extract
the estimated survival curves by getSCurves

ge.sc <- getSCurves(ge.fit)
ce.sc <- getSCurves(ce.fit)

We can then plot and examine the NPMLE’s for the two different groups
using plot and lines

plot(ge.sc, xlab = 'Time',
ylab = 'Estimated Survival', col = 'blue')
lines(ce.sc, col = 'red')
legend('bottomleft', legend = c('ge', 'ce'),
col = c('blue', 'red'), 1lty = 1)

Looking at figure 2.1, we can see a unique feature about the NPMLE
for interval censored data. That is, there are two lines used to represent the
survival curve. This is because with interval censored data, the NPMLE is
not always unique (in fact, it usually is not); any curve that lies between the
two lines has the same likelihood. For example, any curve that lies between
the two blues lines in figure 2.1 maximizes the likelihood associated with
"ge" group of mice.

Formal statistical tests using the NPMLE are not currently supported
by icenReg. We recommend using the interval package for this.

As noted earlier, ICNPMLE can be used to fit the univariate or bivariate
NPMLE. However, there currently are no methods for plotting or testing on
these fits. Because of this, we will not cover the use of this function here.
The curious user is welcome to view ?ICNPMLE.
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Figure 2.1: NPMLE’s for both groups in miceData

2.2 Semi-parametric models

Semi-parametric models can be fit with ic_sp function. This function fol-
lows standard regression syntax. As an example, we will fit the essIncData
dataset. In this dataset, we have income from the European Social Survey,
which includes income reported up to an interval (to preserve the identity of
the subjects). Within each country, the intervals are disjoint, but between
countries there is penty of overlap.

We fit the model below. Note that this may be time consuming, as
the semi-parametric model is somewhat computationally intense and we are
taking bs_samples bootstrap samples of the estimator.

fit_ph <- ic_sp(cbind(inc_1, inc_u) ~ cntry + edulevel,
bs_samples = 500, data = essIncData)

fit_po <- ic_sp(cbind(inc_1, inc_u) ~ cntry + edulevel,
bs_samples = 500, model = "po", data = essIncData)

The first model by default fits a Cox-PH model, while the second fits



a proportional odds model. We can look at the results using either the
summary function, or just directly looking at the results (what is displayed
is the same).

> fit_po

Model: Proportional (Odds

Baseline: semi-parametric

Call: ic_sp(formula = cbind(inc_1, inc_u) ~ cntry + edulevel,
data = essIncData, model = "po", bs_samples = 500)

Estimate Exp(Est) Std.Error z-value p
cntryPoland 2.6190 13.730  0.05724 45.760 O
cntryRussia 0.7940 2.212 0.05450 14.570 0
cntrySlovakia 0.6351 1.887 0.06766 9.387 O
edulevel[12,16) 1.0050 2.732 0.05186 19.380 0
edulevel[16,Inf) 1.8550 6.390 0.05875 31.570 O
final 11k = -12483.03
Iterations = 18

Bootstrap Samples = 500

For the semi-parametric models, bootstrap samples are used for infer-
ence on the regression parameters. The reason for this is that as far as we
know, the limiting distribution of the baseline distribution is currently not
characterized. In fact, to our knowledge, even using the bootstrap error
estimates for the baseline distribution is not valid. Because the regression
parameters cannot be seperated in the likelihood function, using the nega-
tive inverse of the Hessian for the regression standard errors is not generally
valid. However, it has been shown that using the bootstrap for inference on
the regression parameters leads to valid inference.

We can use these fits to create plots as well. The plot function will plot
the estimated survival curves or CDF for subjects with the set of covariates
provided in the newdata argument. If newdata is left equal to NULL, the
baseline survival function will be plotted.

If we wanted to plot the estimated CDF for an individual with between
zero and 12 years of school from Russia against the estimated CDF for an
individual from Bulgaria with 16+ years of school, this can be done with

newdata <- data.frame(cntry = c("Russia", "Bulgaria"),

10
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edulevel = c("[0,12)", "[16,Inf)") )

rownames (newdata) <- c("Russian/Low Ed",
"Bulgarian/High Ed")

plot(fit_po, newdata, fun = "cdf",
lgdLocation = "bottomright", xlab = "income in Euros")

2.3 Parametric Models

We can fit parametric models in icenReg using the ic_par function. The
syntax is essentially the same as above, except that the user needs to spec-

11



ify dist, the parametric family that the baseline distribution belongs to.
The current choices are "exponential", "weibull" (default), "gamma",
"lnorm", "loglogistic" and "generalgamma" (generalized gamma distri-
bution). The user must also select model = "ph" or "po", just as in the
semi-parametric model.

It is not necessary to specify bs_samples for parametric models, as in-
ference is done using the asymptotic normality of the estimators. Fitting a
parametric model is typically faster than the semi-parametric model, even
if no bootstrap samples are taken for the semi-parametric model. This is
because the fully-parametric model is of lower dimensional space without
constraints.

Suppose we wanted to fit a proportional odds model to the essIncData
data with a log-normal distribution. This could be fit by

fit_po_ln <- ic_par(cbind(inc_1, inc_u) ~ edulevel + cntry,
data = essIncData, model = "po", dist = "lnorm")

We can examine the regression coefficients in the same way as with the
semi-parametric model.

> fit_po_ln

Model: Proportional (Odds
Baseline: 1norm
Call: ic_par(formula = cbind(inc_1l, inc_u) ~ edulevel + cntry,

data = essIncData, model = "po", dist = "lnorm")
Estimate Exp(Est) Std.Error z-value p
mu 8.3780 4350.0000 0.007509 1116.00 O
log_s -0.4880 0.6138 0.010240 -47.65 0
edulevel[12,16) 1.0150 2.7590 0.048860 20.77 O
edulevel[16,Inf) 1.8550 6.3910 0.064710 28.66 0
cntryPoland 2.5860 13.2800 0.066930 38.64 0
cntryRussia 0.8493 2.3380 0.055360 15.34 0
cntrySlovakia 0.7928 2.2090 0.062990 12.58 0
final 11k = -14413.81
Iterations = 11

12



F(t)

1.0

0.4

s — Russian/Low Ed
Bulgarian/High Ed

| | | | | |
2000 6000 10000

income in Euros

We can also examine the survival/cdf plots in the same way.

plot(fit_po_ln, newdata, fun = "cdf",
lgdLocation = "bottomright", xlab = "income in Euros")

13



Chapter 3

Inspecting model fit

3.1 Examining Baseline Distribution

Althought the semi-parametric model is more flexible, and thus more robust
to unusual baseline distributions, there are many reasons one may decide
to use a parametric model instead. One reasons is that, as stated earlier,
we are not aware of any general distributional theory regarding the baseline
distribution, outside of the univariate case with case I interval censored data.
Even in this case, the estimator is highly inefficient, observing convergence
rates of n'/? instead of the more standard n'/2. Because of this, making
inference about values that directly require the baseline distribution, such
as creating a confindence interval for the median for subjects with a given set
of covariates, cannot be done with the semi-parametric model. Secondly, we
have found that when it comes to cross-validation (to be described shortly),
we often found the semi-parametric estimator to be overly optimistic for
some loss functions in comparison with a parametric model.

However, even if a parametric model is used for final inference, the semi-
parametric model is still useful for assessing model fit. This is especially
important for interval censored data, as we do not have the option of ex-
amining typical residuals or histograms as we would if the outcome was
uncensored. icenReg has the function diag_baseline that plots several
choices of parametric baseline distributions against the semi-parametric es-
timate. If the parametric distribution shows no systematic deviations from
the semi-parametric fit, this implies the choice of parametric family may
do a reason job of describing the underlying distribution. If there are clear
deviations, this model should not be trusted.

To use diag_baseline, you must provide either a fitted model, or a

14
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formula, data and model. You then select the parametric families that you
would like plotted against the non-parametric estimate (default is to fit all
available). As an example, suppose we wanted to examine the different
parametric fits for the essIncData dataset. This could be done with

diag_baseline(cbind(inc_1, inc_u)
edulevel + cntry,
model = "po",
data = essIncData,
lgdLocation = "topright")

Alternatively, using the fits from earlier, we can just call

diag_baseline(fit_po,lgdLocation = "topright")

Visual diagnostics are always subjective, but in this case we definitively
know that the exponential fit is not appropriate and we believe the log-
normal baseline is most appropriate for the proporitonal odds model.

15



3.2 Examining Covariate Effect

Although semi-parametric models do not make assumptions about the para-
metric family of the baseline distribution, both fully-parametric and semi-
parametric models make assumptions about the form of the covariate effect,
akin to the link function in generalized linear models.

A rule of thumb for identifying gross violations of proportional hazards
is to check if the Kaplan Meier curves cross; if they do, and this cross
appears not purely by chance, the proportional hazards assumption seems
inappropriate.

This can naturally extend to the case of interval censored data by re-
placing the Kaplan Meier curves with the NPMLE. Also, this informal test
can be generalized to the proportional odds model; the proportional odds
assumption also implies that survival curves that differ only by a constant
factor of the odds of survival should not cross.

Another method of assessing involves transforming your survival esti-
mates such that if the assumptions are met, the difference in transformed
survival will be constant. For the proportional hazards model, this is the
complementary log-log tranformation (i.e. log(—1log(s))). For the propor-
tional odds model, this is the logit transformation (i.e. log(s/(1 —s)) ).

Plotting these functions can be done automatically in icenReg using
the diag_covar function. The basic flow is that function takes in the fit,
divides the data up on a covariate of interest. If it is categorical, it simply
breaks up by category, if it is numeric, it attempts to find break point to
evenly split up the data. Then, for each subset of the data, it fits the
corresponding semi-parametric model and plots the transformation of the
baseline distribution.

To demonstrate, suppose we wanted to assess whether the Cox-PH or
proportional odds model was more appropriate for the essIncData. This
could be done by

diag_covar(fit_po, lgdLocation = "topright")
diag_covar(fit_ph, lgdLocation = "topright")

We see that especially for edulevel, the porportional odds seems much
more appropriate (the difference between transformed values seems more
constant). This agrees with the fact that the likelihood is almost 100 greater
for the proportional odds model than Cox-PH.

Note that the plots for cntry are very limited. This is because the
mean trend is removed from the plots. However, since the cdf for the semi-

16
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parametric model for the Bulgaria subset of the data is defined as exactly 1
around 10,000, the mean of the transformation is not defined.

We can replot the transformation, without the mean removed, by the
following call:

diag_covar(fit_po, yType = "transform",
lgdLocation = "topright")

3.3 Imputed Cross Validation

Cross validation is a popular method for evaluating how well a model will
perform on new data. In general, the idea is simple enough: to get an esti-
mate of some loss function on out of sample data for a given model, we split
the data into training and validation datasets. The training dataset is used
to fit the model (without touching the validation data). Then an estimate
of the out of sample error can be generated by predicting the response in the
validation dataset and directly computing the loss function. In K-fold cross
validation, K disjoint subsets of the data are used as validation datasets and
the process is repeated K-times.

For censored data, this generic recipe is not so simple. In particular, if
a value in the validation set is censored, there is typically no direct method

18



for calculating the contribution to the loss function associated with this
observation.

One method to deal with censoring that has appeared in the literature
is to calculate likelihood over the validation data set. As an alternative,
we offer an imputation based approach. To calculate the average loss func-
tion, we take several imputations (or samples) of the interval censored data
condtional on the covariates and censoring interval (i.e. the distribution is
truncated such that the imputation will fall inside the given censoring inter-
val). The average loss across all imputations is then taken as the evaluated
loss.

To impute the data, we first take a sample of the posterior parame-
ters and conditional on the parameters and censoring interval, we sample
the censored values. An important note is that icenReg does not sample
the baseline parameters, but only the regression parameters for the semi-
parametric model. This means that the uncertainity in the baseline param-
eteris is ignored. For the fully parametric model, both the regression and
baseline parameters are sampled.

For the prediction, the median value conditional on the parameter esti-
mates is used. This is not neccesarily the estimate that minimizes the loss
function, but it is generally a reasonable estimate.

Cross validation can be done with icenReg’s icenReg_cv function. This
takes a regression model (either from ic_par or ic_sp), and a loss function
to be calculated. CAUTION: When using cross-validation on an ic_sp fit,
the total number of models fit will be fold (default = 10) x bs_samples.
This can get very expensive very quickly!

The default loss function is abs_inv, which is defined as

abs_inv <- function(pred, t_val) {
mean(abs(1/(pred + 1) - 1/(t_val + 1)))
}

Although we believe this to be a reasonable loss function for survival
data (heavy penalizes for missing subjects that are at high risk, does not
heavily penalizing for not being precise with low-risk subjects as long as they
are identified as low risk), this function is not the final say in loss functions.
A user can write their own loss function, which should take in arguments
pred and t_val, where pred is the predicted value and t_val is the true
response value.

Imputed cross validation can then be used as such:

19



icenReg_cv(fit = fit_po, loss_fun = abs_inv)

3.4 Appendix

Both the bootstrap and cross validation statistics can be extremely com-
putationally expensive, yet also are both embarrassingly parallel problems.
As such, they are written take advantage of multiple cores via the doPar-
allel package. Below is demonstrated how to run the bootstrap and cross
validation using four cores.

library(doParallel)

myCluster <- makeCluster(4, type = 'FORK')

registerDoParallel (myCluster)

fit <- ic_sp(cbind(inc_1, inc_u) ~ edulevel + cntry,
data = essIncData, model = "po",
bs_samples = 50, useMCores = TRUE)

par_fit <- ic_par(cbind(inc_1l, inc_u) ~ edulevel + cntry,
dist = "lnorm", model = "po",
data = essIncData)

cv_error <- icenReg_cv(par_fit)

#Fit a parametric model because it is much faster;
#does not need to fit bootstrap samples for each
#training set

stopCluster (myCluster)
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