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Abstract

Market models constitute a significant cornerstone of empirical applications in busi-
ness, industrial organization, and policymaking macroeconomics. Econometric literature
proposes various estimation methods for markets in equilibrium, which entail a market-
clearing structural condition, and disequilibrium, which are described based on a struc-
tural short-side rule. Nevertheless, maximum likelihood estimations of such models are
computationally demanding, and software providing simple, out-of-the-box methods for
estimating them is scarce. Applications, therefore, rely on project-specific implemen-
tations for estimating these models, which hinders research reproducibility and result
comparability. This article presents the R package markets, which provides a common
interface with generic functionality simplifying the estimation of models for markets in
equilibrium and disequilibrium. The package specializes in estimating demanded, sup-
plied, and aggregated market quantities and absolute, normalized, and relative market
shortages. Its functionality is exemplified via an empirical application using a classic
dataset of US credit for housing starts. Moreover, the article details the scope and design
of the implementation and provides statistical measurements of the computational perfor-
mance of its estimation functionality gathered via large-scale benchmarking simulations.
Markets is free software distributed under the MIT license as part of the R software ecosys-
tem. It comprises a set of estimation and analysis tools that are not directly available
from either alternative R packages or other statistical software projects.

Keywords: disequilibrium, marginal effects, market clearing, maximum likelihood, short side
rule, shortages .
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1. Introduction

Demand and supply estimations are among the most common objectives of econometric work
in policy-making, business, and finance. Foundational economic reasoning suggests that the
combination of these two market forces determines observed outcomes, with various theories
proposing different rules through which demand and supply translate to traded quantities and
prices. These rules rely on different identification conditions, leading to distinct implications
for the estimated market fundamentals. Shared among all approaches is that prices and
quantities, simultaneously determined in a market system, represent different sides of a single
coin.

With this shared characteristic as its focal point, the usage scope of R (Team 2021) pack-
age markets is to provide a common estimation interface for market models with different
structural assumptions. Moreover, the package’s design goal is to provide harmonized post-
estimation analysis functionality. The variability of identification conditions found in com-
monly used market models and the computational difficulties relating to their estimations
prevented other software from providing a standard interface with unifying model function-
ality. As a consequence, recent empirical results obtained from market models with com-
putationally demanding estimation methods rely on project specific implementations (e.g.,
Carbé-Valverde, Rodriguez-Fernandez, and Udell (2016); Loberto and Zollino (2018)), using
various optimization tools and methods with nonstandardized starting values and tolerances.
This situation makes project replication and cross-project comparability difficult.

The primary purpose of using market models is to obtain estimates of price elasticities,
demanded/supplied quantities, and shortages/surpluses. Markets offers a variety of well-
established methods to obtain estimates of elasticities and market quantities. In addition, it
provides a unified set of analysis and visualization tools for the obtained market fits irrespec-
tive of their structural assumption. Furthermore, markets specializes in estimating market
shortages, providing functionality through which shortage estimates are measured in absolute,
normalized, and probability terms.

The common interface of markets exposes different estimation methods and optimization tools
for the market models it implements. The implemented models follow the most used struc-
tural assumptions found in empirical applications of economics and finance. The most used
structural assumption is market clearing, which postulates that prices are infinitely responsive
to demand and supply changes and swiftly adjust so that demand and supply perpetually
equalize. Alternative structural assumptions are more useful in cases where market short-
ages or surpluses are observed, and the market clearing assumption constitutes a rather poor
approximation. Unemployment in labor markets and financial constraints in credit markets
are prominent examples of market surpluses and shortages correspondingly. Shortages and
surpluses can also manifest due to exogenous effects. The semiconductor markets are con-
temporary examples of unexpected shortages reported after the COVID19 pandemic. Market
models describe such market states using the short-side rule, which presumes that the price
adjustment mechanism is imperfect and temporary market imbalances can lead to disparities
between demanded and supplied quantities.

Estimating models under the market clearing condition is straightforward because the system
resulting from this identification rule is linear, and many software solutions offer appropriate
methods. In contrast, the estimation of short side rule systems is comparatively more involved.
Because the short-side rule introduces non-linearities to the market system, computational
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difficulties related to estimating models with these systems hindered the development of stan-
dard tools, despite the well-understood methods for their estimation. The package markets
closes this persisting gap by providing a common framework for estimating, visualizing, and
analyzing models relying on both market clearing and short side rules.

The common framework comprises five market models; a model based on market clearing and
four models based on the short side rule. All market models of the package are estimated by
maximizing their full information likelihoods. The market clearing model can additionally be
estimated using two-stage least squares. Furthermore, the estimation interface of markets
allows choosing among the available optimization methods in stats::optim. Lastly, access
to a native optimization procedure from the Gnu Scientific Library (henceforth GSL) (Galassi
and Gough 2009) is provided for the market clearing model.

More importantly, markets uses analytic expressions for calculating the gradients of all like-
lihoods by default, which greatly reduces the computation times of maximum likelihood
optimizations. The article presents statistical evidence documenting the overperformance
of the usage of analytic gradients, the expressions of which are package exclusive. These
statistics are obtained from large-scale benchmarking estimations using simulated data in
the high-performance cluster of Goethe University’s Center for Scientific Computing (CSC).
The article presents benchmarking measurements for estimating all models using Broyden-
Fletcher-Goldfarb-Shanno (hereafter BFGS) with analytically calculated gradients, BFGS
with numerically approximated gradients, and Nelder-Mead.

The package incorporates analytic Hessian expressions for two of its short side rule models.
These expressions are used to calculate standard errors by default. In addition, markets
exports functionality options allowing to estimate heteroscedastic or clustered standard errors
for all five models.

Last but not least, markets offers a set of comprehensive analysis and visualization post-
estimation methods. The visualization methods offer an intuitive way of examining the es-
timated price elasticities against the quantity-price points observed in the data. The post-
estimation analysis methods fall into three categories. First, markets offers methods for
obtaining fitted demand and supply values, as well as their aggregates. Second, it provides
tools for measuring shortages and surpluses from fitted market models. Lastly, the pack-
age exposes methods for assessing the effects of changes in the market system’s variables on
shortages and surpluses.

The remaining article gives an overview with examples of analyses that can be performed with
markets. Section 2 is a short introduction to equilibrium and disequilibrium econometrics.
It presents the stochastic systems of the five market models of markets and discusses their
likelihoods. Section 3 documents the design approach followed by the package, the scope
of its functionality, and compares it to its closest alternatives. Section 4 demonstrates the
functionality provided by markets. The presentation uses an empirical example based on the
classic dataset of Fair and Jaffee (1972), which is also shipped with the package. Finally,
section 5 documents the performance benefits of the package by presenting the results of the
large-scale estimation benchmarking exercises comparing various optimization tools. The last
section concludes.


https://csc.uni-frankfurt.de/wiki/doku.php?id=public:start
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2. Econometric background

Market models have been used in econometrics to concisely describe the trading interactions
of multiple independently acting agents. They comprise at least two aggregate forces, one
stemming from the agents that ask for a commodity or service (the demand side) and one
originating from those that offer this commodity or service (the supply side). It is remarkable
that despite abstracting from particular characteristics of agents’ behavior, such top-down
market models still have notable interpretability and predictability capacities.

To illustrate this point, consider a normal and linear in parameters system of demand and
supply forces
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where D is the demanded quantity, S the supplied quantity, P the market price, X7¢ and
X7 are equation specific control variables, X7 are market wide control variables, and u? and
u® are jointly, normally distributed shocks. The parameter a? governs how elastic is demand,
i.e. how sensitive it is with regard to price changes. Estimates of a¢ offer valuable insight to
firm owners or managers because, based on this information, they can evaluate how different
pricing strategies available to them will affect demand and, thereby, firm profits. Analogously,
a® controls the elasticity of supply, estimates of which can be very informative to have when
designing output taxation strategies as a policymaker.

In spite of the above modeling approach’s elegance, egs. (1) and (2) are not enough to obtain
parameter estimates because demanded and supplied quantities are not typically observed
in market data. Instead, the observed quantities in market data are the traded quantities.
Surveys can be (and have been) used to gather more information on how much of a commodity
is asked or offered for each potential price point. However, the cost of accumulating survey
data and, on some occasions, the unwillingness of market participants to truthfully reveal
such information due to strategic reasons limits the applicability of the approach.

On the other hand, estimating the parameters of egs. (1) and (2) using market data requires
specifying how the observed traded quantity is related to the unobserved demanded and
supplied ones. The easier and most prominent way of establishing this relationship is via the
market clearing condition

Qn,t = Dn,t = Sn,t- (3)

The market clearing condition postulates that demanded and supplied quantities are equal
for all entities and time points. The stochastic, linear system combining eqs. (1) to (3) is
commonly referred to as the equilibrium model.

The equilibrium model can be estimated using either two-stage least squares or full infor-
mation maximum likelihood (see Zellner and Theil (1962) and (Balestra and Varadharajan-
Krishnakumar 1987)), with the two methods being asymptotically equivalent. Substituting

!This is perhaps an unfortunate effect of institutional inertia that reinforces the usage of the less accurate
‘equilibrium model’ naming convention in favor of the more descriptive ‘market clearing model‘ term.
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eq. (3) into egs. (1) and (2) gives a system of two stochastic equations on traded quanti-
ties and prices, which can be used to derive the model’s likelihood. To simplify the likeli-
hood’s expression, suppose that ¢ denotes the (normal) joint density of u¢ and v*, and let
0= (ad,ﬁd,asﬁs) and Y = (Yy, Ys), where

Qm:(ﬁan,{ﬁjr-”}j,{n}n}j>/ and Ym:<1,{Xg’m}j,{Xj}j)/ for m=d,s.

Then, the equilibrium model’s likelihood is given by

dP
LiapY) =55 @rVi0) =9 (a—a'p—03Ya, g—a’p—0,Y,).

Estimating the parameters of vector 6 allows one to also calculate fitted values for the de-
manded and supplied quantities (say ﬁn,t and Sn,t)~ Because of the error terms uﬁ’t and uy, 4,
the fitted values of lA)n,t and gn,t for individual observations can defer, allowing entity n at
time ¢ to have an expected shortage given by GAn,t = Dn,t — S’nf. Nevertheless, the market
clearing condition imposes that the shortages of some observations are canceled out by the
surpluses of other observations on average. Therefore, on aggregate shortages tend to vanish,

Le. 32, Gny is close to zero.

Thus, market clearing is not the most conducive identifying condition for describing all mar-
kets for all periods. Market shortages and surpluses can occur either due to frictions (e.g.,
unemployment in labor markets or financial constraints in loan markets), strategic behaviors
(e.g., the 1973-74 petroleum shortages resulted from the embargo of the Organization of the
Petroleum Exporting Countries), or unexpected crises (for example the 2021-2022 semicon-
ductor shortages following the COVID19 pandemic).

An alternative identifying condition allowing for aggregate shortages is the short side rule,
i.e.,

Qnt = min {Dn,ta Sn,t} . (4)

Models that replace the market clearing condition with the short side rule are known as
disequilibrium models. This modification makes the systems of the disequilibrium models
non-linear, which prevents using least square methods for estimating them. Full informa-
tion maximum likelihood still offers a viable method (Maddala 1986), albeit accompanied by
computation complexities (see also section 5).

Instead of equating demanded and supplied quantities, the short side rule postulates that the
minimum from these two quantities is observed in the data. This identifying condition allows
shortages both for particular observations and on aggregate. For a particular observation,
the probability that the traded quantity equals the supplied quantity is calculated by

TrS:P(D>S|p,Y;9):IP’(ud—uS >asp—|-9ngs—adp—9£in|p,Y;9>, (5)

where the random variable u? — u* is normally distributed as the difference of normally
distributed random variables. The probability that the traded quantity equals the demanded
quantity, denoted by mp, is defined analogously.

2There is no need to introduce a separate symbol for surpluses as they can be thought as negative shortages.
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The basic (disequilibrium) model is defined by egs. (1), (2) and (4) (Maddala and Nelson
1974). Using the total probability theorem, its likelihood can be represented by a two-parts
expression, namely

dP
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The first part is the density of the demanded quantities, conditional on that it is equal to the
observed quantity, multiplied by the probability that this state is observed. The second part
is the analogous expression for cases when supplied quantities are observed.

One limitation of the basic model is that it ignores the role of prices in market systems. If
the market is in an excess demand state, the producers can increase their profits by raising
prices. Analogously, if the market is in an excess supply state, they can eliminate their
surpluses by offering lower prices. Abstracting from such a core feature of the market can
lead to underfitting and increase the bias error of the basic model.

The directional model mitigates this issue by introducing a separation rule based on price
movements (Fair and Jaffee 1972). In addition to egs. (1), (2) and (4), the directional model
separates the sample according to

Apn,t > 0 = Dn,t > Sn,t~ (6)
With observations belonging either to an excess demand or to a excess supply state, the
model’s likelihood likelihood is
dP
d@
where Ia p>( is an indicator function taking the value one if condition (6) is satisfied. Because
prices are used to separate the sample, they cannot be included in both the demand and supply
specifications (see Maddala and Nelson (1974)), making the model applicable only for markets
with fully inelastic demand or supply.

P 1-Iap>0 Iap>o0
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The deterministic adjustment model maintains sample separation based on price movements;
however, it allows the estimation of price coefficients for both sides of the market by including
an additional parameter in the price equation. The extra price adjustment parameter increases
the model’s flexibility. To be concrete, the model comprises egs. (1), (2), (4), and the
deterministic price dynamics

1
APn,t = ; (Dn,t - Sn,t) ) (7)

which also serves as the separation rule. Given the classification of an observation based on
this rule, one of the variables D and S can be eliminated. As a result, the remaining variable
becomes equal to the traded quantity. This, by slightly abusing the notation so that the
parameter vector 6 also contains 7y, results in the likelihood

L:=L(0;q,p,p-1,Y)
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The deterministic adjustment model is conceptually close to the equilibrium model in that
if one lets v approach zero, prices become infinitely flexible, which essentially dictates that
demanded and supplied quantities tend to be equal.

The last model of markets is the stochastic adjustment model. Its system is determined by
egs. (1), (2), (4), and the stochastic price dynamics

1 P
APn,t = ; (Dn,t - Sn,t) + ﬁ(l)) + Z ﬁpX%p + ’LLn ) (8)

where X7P are the control variables and u? the disturbance term of the price dynamics. Since
eq. (8) is stochastic, it cannot be used to separate the sample and the stochastic seperated
model does not rely on any pre—estiamation classification of observations. To write to likeli-

hood of this model, let 6, = (ﬁp ) =(X J*p) Suppose also that 6 contains the parameters

v and 6p, and that Y contains Y,. Moreover, let ¢ denote the joint density of the shocks u?,
u®, and uP. Then ,the likelihood of this model is given by

dP
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The stochastic adjustment model has the most flexible system among the five market models
reviewed in this section. The model’s flexibility reduces the bias error but increases the

variance error of its fits. In addition, the increased flexibility intensifies the computation
complexity of estimating the model.

3. Scope, design, and alternatives

The estimation functionality of markets aims at disentangling demand and supply from mar-
ket data using various structural identification conditions. In particular, the package imple-
ments a model based on market clearing and four models based on the short side rule. The
majority of the functionality offered by markets does not have any implemented alternatives
in either R or other statistical software.

The market clearing model is the one for which estimation with alternative software is mostly
available. This is mainly due to the availability of the model’s two-stage least square esti-
mation method. The method is fast, reliable, and accessible via simple commands in main-
stream statistical software, rendering specialized libraries less relevant. However, the situation
is entirely different regarding the disequilibrium models. Least square estimation methods
are not available, the models have nonlinear systems with comparatively more complicated
likelihoods, and their estimation is associated with computational difficulties because their
likelihoods have poles and multiple local maxima. Although they have been frequently used
in applications (see, e.g., Carb6-Valverde, Rodriguez-Fernandez, and Udell (2009); Carbé-
Valverde et al. (2016); Loberto and Zollino (2018); Baird, Daugherty, and Kumar (2019)),
each project has been based on distinct (re-)implementations of estimation procedures using



8 The R Package markets

different starting values, tolerance parameters, and optimization tools. Non open-source im-
plementations raise research reproducibility obstacles and make results’ comparison difficult,
if not impossible.

The package markets aims to fill this gap by providing an open-source implementation of
market model estimation with simple workflows making equilibrium and disequilibrium mod-
els equally accessible. In addition, the package delivers a common interface for analyzing
all market models irrespective of their identification conditions. This feature greatly ame-
liorates the cross model comparison of estimation results. The same methods are used to
estimate, visualize, and summarize all models implemented in the package. Last but not
least, markets supports maximum likelihood estimations using analytically calculated expres-
sions of gradients, which are significantly faster than estimations based on numerical gradient
approximations or derivative-free methods (see section 5).

With the single exception of the basic disequilibrium model, which can also be estimated us-
ing the R package disequilibrium (Disequilibrium 2020), the maximum likelihood estimation
functionality found in markets is not directly offered by alternative statistical software. With
the disequilibrium package, one can estimate the basic model using the L-BFGS-B imple-
mentation of optim with the numerically approximated model likelihood’s gradient. Instead,
markets allows the user to choose both the optimization method and whether numerical ap-
proximations or analytic gradient and Hessian calculations are used. There are no software
alternatives for estimating the directional, deterministic adjustment, and stochastic adjust-
ment models. By default, the BFGS implementation of optim with analytic expressions for
the gradients is used in the maximum likelihood estimations of all models.

The estimation methods implemented by markets have macroeconomic origins (Fair 1971;
Maddala and Nelson 1974), but have found applications in empirical economics and finance
research using microdata (see for instance Bulligan, Busetti, Caivano, Cova, Fantino, Locarno,
and Rodano (2017) and Carbé-Valverde et al. (2009)). In this respect, demand estimation
methods such as the Almost Ideal Demand Systems (AIDS) of Deaton and Muellbauer (1980)
and the structural estimation of Berry, Levinsohn, and Pakes (1995) (typically abbreviated
as BLP) partially overlap with the methods described in this article. The AIDS and BLP
methodologies are micro-founded, but they focus only on the demand side and do not con-
cern varying structural assumptions such as the market clearing and short side rules. Imple-
mentations of these methods can be correspondingly found in the R packages blpestimator
(BLPestimatoR 2019) and miceconaids (MicEconAids 2017).

Markets organizes its functionality based on the object oriented hierarchy depicted in fig. 1.
Five front-end model classes, one corresponding to each implemented model, are exposed to
the user. These are the (i) equilibrium_model, (ii) diseq_basic, (iii) diseq_directional,
(iv) diseq_deterministic_adjustment, and (v) diseq_stochastic_adjustment classes.
The two back-end classes, namely (i) market_model and (ii) disequilibrium_model, act
as base abstract classes and enclose functionality that is common for all market models. The
overarching market_fit class acts as the common interface through which the functionality
of the package is exposed to the user in a uniform fashion.

The package implements maximum likelihood estimation routines for the four disequilibrium
models. Moreover, it implements both maximum likelihood and least squares estimation
methodologies for the equilibrium_model. The least squares estimation is based on the
R package systemfit (Henningsen and Hamann 2007). The maximum likelihood estimation
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Figure 1: Design overview.
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is implemented for all models based on optim, via the bbmle package. In addition, The
equilibrium_model’s likelihood can be maximized using native GSL optimization routines.

When building the package from its sources, if the C4++17 version of execution.h is installed
in the target machine during installation, some parallelization optimizations are enabled in
the native estimation routines. Specifically, gradient calculations are parallelized using the
std: :execution: :par_unseq execution policy when the likelihood is maximized with GSL.
The usage of native optimization routines does not necessarily result in faster execution times
because there is an overhead stemming from the communication between R and GSL. Unre-
ported estimation time benchmarks indicate that for small datasets, machines without C+-+17
support, or machines with few available processors, the communication cost is greater than
the benefits of using native routines, which results in slower execution times. Still, estimating
the equilibrium model via GSL routines is included in the package’s exposed functionality to
accommodate use cases with access to parallel execution®. In addition, native likelihood max-
imization allows the user to customize the optimization call further by choosing the step size
and the gradient tolerance of the BFGS algorithm. The two-stage least squares methodology
is, of course, the least computationally intensive estimation method for the equilibrium model
as it merely involves linear algebra operations (see Henningsen and Hamann (2007) for the
statistical background). For well-behaved samples, all estimation methods and optimization
tools available for the equilibrium_model result in similar estimates (see appendix C).

Internally, all five models of markets have similar implementation components, which are
depicted in fig. 2. Each model class contains a logging object that handles the exposed
methods’ output depending on the verbosity chosen during initialization. More importantly,
model classes contain objects describing their corresponding systems. Objects of system

3And potential future support of the C++17 standard in the architectures targeted by R and CRAN.
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classes contain data describing the models’ systems of stochastic equations. In this respect,
system classes contain equation objects for each stochastic equation of the systems they
describe. All system classes contain demand and supply equation objects because these
equations are ubiquitous in all market models. The diseq_stochastic_adjustment system
class additionally contains a price equation object. The system and equation classes primarily
contain back-end functionality used to store and organize intermediate estimation data. The
functionality of markets is intended to be accessed via the exposed methods of the market
models and market_fit classes.

Figure 2: Market class implementation.
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4. Functionality via an empirical example

The package is designed following R’s model estimation paradigm. Estimation calls expect
model formulas evaluatable in accompanied data frames and return fitted market models.
Estimation results can then be accessed by applying standard R methods such as summary,
coef, plot on the fitted objects. In addition, markets offers package specific methods, such
as shortages, demanded_quantities, shortage_marginal, to examine market relevant im-
plications of the obtained fits.

4.1. The houses dataset

The houses dataset contains monthly macroeconomic time series for the US housing credit
market from July 1958 to December 1969. The housing credit market was initially studied by
Fair (1971) for this period. Subsequent work on the estimation and assessment of short side
rule market models also uses US housing credit data for this period to illustrate the introduced
methodologies (for instance, see Fair and Jaffee (1972), Maddala and Nelson (1974), and shin
Hwang (1980)).

Table 1 presents the variables of the houses dataset and provides short descriptions for
them. The dataset was constructed according to the sources provided in the Fair (1971).
The series of RM were directly obtained by Fair (1971, table A.3). The observations of HS
were collected from the Economic Report of the President, W were manually compiled, while
DSLA, DMSB, and DHLB were collected from the Federal Reserve Bulletin.
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Table 1: Variables in the houses dataset.

DATE  The date of the record.

HS Private non-farm housing starts in thousands of units (not seasonally adjusted).

RM FHA Mortgage Rate series on new homes in units of 100 (beginning-of-month data).

DSLA  Savings capital (deposits) of savings and loan associations in millions of dollars.

DMSB Deposits of mutual savings banks in millions of dollars.

DHLB Advances of the federal home loan bank to savings and loan associations in million of dollars.
W Number of working days in month.

The examples of this section use the demand and supply equation specifications of shin Hwang
(1980) and Maddala and Nelson (1974) as starting points. In particular, the starting demand
equation is given by

12

Dy = o’ RM, + B§ + Bt + BIW, + B§CSHS, + B{RM;—1 + BIRM;—2 + > 81, ;MONTH; ; + uf,
i=2

where C'SHS is the cumulative sum of past housing starts and MONT H; are monthly in-

dicator variables. The variable CSHS is used as a proxy of the stock of available houses,

and the monthly indicators are used to capture seasonal demand effects. The starting supply

equation is specified as

12
Si = o*RM; + B + Bit + BsWi + B3RM;_1 + B{M Ag(DSF,) + BM As(DHFy) + Y 5, ;MONTH; s + uj,
=2
where M Ag(DSF) is the moving average of order 6 of the flow of deposits in savings as-
sociations, loan associations, and mutual savings banks, while M A3(DHF') is the moving
average of order 3 of the flow of advances of the federal home loan bank to savings and loan
associations. The stochastic terms ug4; and u,; are jointly, normally distributed. The moving
averages and lagged variables of the analysis are constructed from the variables of the houses
dataset. The fair_houses function of markets automates the construction.

R> house_data <- fair houses()

4.2. Model formulas

The market system is specified in estimation calls by formulas, which contain the quantity
and price variables, the subject and time identification variables, and the right-hand sides of
the stochastic equations of the system. The back-end implementation of markets relies on the
functionality of the R package Formula (Zeileis and Croissant 2010). Moreover, the format of
Formula is adopted for the description of market model systems. Pipe operators separate the
various elements of the market model formula. The model formulas standardize the input of
estimation calls of different market models to a great extent.

As an example, the formula corresponding to the demand and supply equations of section 4.1
is given in listing 1. From left to right, the left-hand side of the expression specifies the
quantity, price, subject, and time variables of the house_data data frame. The right-hand
side of the expression specifies from left to right (the right-hand side of) the demand and
supply equations.

11
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Listing 1: An example of a market model formula.

HS | RM | ID | TREND ~
RM + TREND + W + CSHS + L1RM + L2RM + MONTH |
RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH

Each market model combines the quantity variable with the demand and supply specifications
according to its identification condition (market clearing or short side rule) and, whenever
relevant, its sample separation rule and price dynamics. Further, the dynamic market models
use the price, subject, and time variables to calculate price differences, as required in their
estimation.

4.3. Estimation

Models can be initialized and estimated using either a single function call or two separate
calls, one for initialization and one for estimation. The first approach is the most convenient
one for most use cases. However, there are some use cases in which the second approach
can have some advantages depending on the workflow. For example, maximum likelihood
estimations with large datasets can be time consuming; thus, it can be convenient to initialize
a market model once and then estimate it in parallel using different optimization methods,
starting values, and other estimation parameters. More details about the initialization calls
(constructors) can be found in appendix D. The following presentation focuses on the single
call estimation approach. All five market models available in markets are estimated using
maximum likelihood in the following examples.

Listing 2 estimates the equilibrium model. The first argument specifies the market model
formula, and the second the used data frame. The first two input arguments are used during
the model’s initialization. The third argument is a list with options used in the model’s
estimation. For instance, the call of listing 2 sets the maximum number of iterations in the
control argument of the optimization routine equal to 5000.

Listing 2: Estimating the equilibrium model.

R> eq <- equilibrium_model(

+ HS | RM | ID | TREND ~ RM + TREND + W + CSHS + L1RM + L2RM + MONTH |
RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,

house_data, estimation_options = list(control = list(maxit = 5000))

)

+ + +

Listing 3 estimates the deterministic adjustment model without modifying the used formula.
By default, operations of markets display errors and warnings in the standard output. How-
ever, it can be helpful to have more information about the performed operations on some
occasions (e.g., during development or testing). The default behavior can be overridden by
specifying the verbose argument of the estimation call. For instance, the following call sets
the verbosity level to be equal to 2, which besides errors (level 0) and warnings (level 1),
displays basic information concerning the performed operations in the standard output. In
this case, the diseq_deterministic_adjustment call displays three information messages
(preceded by Info :) and one warning message (preceded by Warning :). The first informa-
tion message declares the model, the second gives the number of observations dropped due
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to the calculation of lagged prices, and the third informs the caller about the data subsets
created by the model’s separation rule.

Listing 3: Estimating the deterministic adjustment model.

R> da <- diseq_deterministic_adjustment (

HS | RM | ID | TREND ~ RM + TREND + W + CSHS + L1RM + L2RM + MONTH |
RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,

house_data,

verbose = 2,

estimation_options = list(control = list(maxit = 5000))

)

+ + + + + +

Info: This is 'Deterministic Adjustment with correlated shocks' model
Warning: Dropping 14 rows due to missing values.

Info: Dropping 1 rows to generate 'LAGGED_RM'.
Info: Sample separated with 18 rows in excess supply and 111 in excess demand state.

The default optimization routine used by markets is BEFGS with analytically calculated gra-
dient expressions, which is the fastest available optimization option (see section 5). On rare
occasions, numerical stability issues might be less prominent in derivative-free optimization
algorithms. Access to alternative optimization routines is provided by setting the method in
the estimation_options list. As an example, listing 4 estimates the directional model using
the Nelder-Mead algorithm.

Listing 4: Estimating the directional model.

R> dr <- diseq_directional(
HS | RM | ID | TREND ~ TREND + W + CSHS + L1RM + L2RM |
RM + TREND + W + MA6DSF + MA3DHF + MONTH,
house_data, estimation_options = list(
method = "Nelder-Mead", control = list(maxit = 5000)
)

+ + + + + +

Maximum likelihood estimations in markets are initialized by automatically calculated start-
ing values coming from model-specific, linear regressions by default. For instance, the basic
model’s starting values are obtained by regressing the (observed) traded quantity on the de-
mand and supply right-hand side specifications. The equilibrium model’s starting values are
obtained by two stage least square estimates of the system. The user can override the default
behavior and provide custom starting values. Listing 5 provides an example of starting value
customization. In this case, the estimated coefficients of the equilibrium model are used as
starting values for the estimation of the basic model. The underlying optimization routine
of optim expects that the length of the initializing vector and the names of its entries corre-
spond to the number and names of model coefficients to be estimated. If this is not true, the
initialization of the optimizer fails. This behavior has to be taken into account when passing



14 The R Package markets

starting values. For example, listing 5 estimates the basic model using independent shocks,
which would fail if the correlation coefficient was not removed from the supplied starting
values.

Listing 5: Estimating the basic model.

R> start <- coef(eq)
R> start <- start[names(start) != "RHO"]
R> bs <- diseq_basic(
HS | RM | ID | TREND ~ RM + TREND + W + CSHS + L1RM + L2RM + MONTH |
RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
house_data, verbose = 2, correlated_shocks = FALSE,
estimation_options = list(
start = start,
control = list(maxit = 5000)

+ + + + + + + +

Info: This is 'Basic with independent shocks' model

Warning: Dropping 14 rows due to missing values.

The last estimation example uses the stochastic adjustment model. The stochastic adjustment
model is comprised of three stochastic equations. Thus, the passed model formula should
also specify the right-hand side of the stochastic price dynamics (see eq. (8)). The model
constructor automatically accounts for the shortage term (D, — S;) appearing in eq. (8)
but it is not observed in the data. Thus, the caller needs to provide only the remaining
summands. As a concrete example, listing 6 estimates the stochastic adjustment model with
price dynamics’ specification

1
ARM,; = S (D¢ — St) + By + BTt + ByRM; o + B3 RM; 3 + up 4 + uy.

In addition, the call of listing 6 instructs the estimation routine to calculate clustered standard
errors with respect to the levels of variable W (number of working days in a month).

Listing 6: Estimating the stochastic adjustment model.

R> sa <- diseq_stochastic_adjustment (
HS | RM | ID | TREND ~ RM + TREND + W + CSHS + MONTH |
RM + TREND + W + L1RM + L2RM + MA6DSF + MA3DHF + MONTH |
TREND + L2RM + L3RM,
house_data 7>}, dplyr: :mutate(L3RM = dplyr::lag(RM, 3)),
correlated_shocks = FALSE,
estimation_options = list(
control = list(maxit = 5000), standard_errors = c("W")

)

+ + + + + + + + +
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Table 2: Estimation results.

Coefficient Equilibrium Basic Directional Deterministic Adjustment Stochastic Adjustment
D _RM -6.1023 (0.00)  -8.5775 (0.00) - -4.1059 (0.00) -0.7858 (0.00)
D_CONST 27.8398 (0.00)  27.9163 (0.00)  -9.4997 (0.00) 42.0706 (0.00) 544.2326 (0.00)
D_TREND -2.6505 (0.00) -40.7558 (0.00)  17.6369 (0.00) -1.6725 (0.00) -21.0405 (0.00)
D W 2.0788 (0.11) -34.1589 (0.00) 4.2710 (0.36) 1.3389 (0.26) 2.0541 (0.00)
D_CSHS 0.0245 (0.00) 0.2489 (0.00)  -0.1512 (0.00) 0.0162 (0.00) 0.1936 (0.00)
D_LIRM 8.1887 (0.00)  14.8501 (0.00) 0.9166 (0.65) 5.9190 (0.00) -
D_L2RM -2.0649 (0.00)  -2.6789 (0.40)  -0.9874 (0.62) -1.7948 (0.00) -
S_RM 1.0922 (0.00) 0.4105 (0.06) 0.0738 (0.00) 0.2990 (0.40) 0.1312 (0.64)
S_CONST -58.4268 (0.00) -77.8745 (0.00) -40.1998 (0.00) -35.6561 (0.00) -145.8874 (0.00)
S_TREND -0.1834 (0.00)  -0.1409 (0.00)  -0.1799 (0.00) -0.1324 (0.00) -0.4199 (0.00)
S W 2.9547 (0.00) 3.3174 (0.00) 2.0319 (0.00) 2.1560 (0.00) 4.4480 (0.00)
S_LIRM -1.0346 (0.00)  -0.3358 (0.13) - -0.2399 (0. uO) -0.1446 (0.77)
S_MAG6DSF 0.0517 (0.00) 0.0522 (0.00) 0.0455 (0.00) 0.0443 (0.00) 0.0479 (0.00)
S__MA3DHF 0.0411 (0.00) 0.0391 (0.00) 0.0440 (0.00) 0.0321 (0.00) 0.0507 (0.00)
S L2RM - - - - 0.2050 (0.48)
RM_ DIFF - - - 1.7691 (0.00) 35.0072 (0.00)
P_CONST - - - - -25.1006 (0.00)
P_TREND - - - - -0.0228 (0.23)
P_L2RM - - - - 0.2316 (0.00)
P_L3RM - - - - -0.1887 (0.01)
D_VARIANCE 871.7024 (0.00) 852.2636 (0.00) 591.7524 (0.00) 748.3891 (0.00) 47.9038 (0.00)
S_VARIANCE 122.2970 (0.00) 100.3229 (0.00)  89.8593 (0.00) 102.3528 (0.00) 82.1946 (0.00)
P_VARIANCE - - - - 24.1400 (0.00)
RHO -0.0575 (0.67) - -0.0810 (0.93) 0.1562 (0.35) -

Table 2 presents the estimated coefficients for all five models. The coefficients of the monthly
indicators are omitted for brevity. Parentheses contain the p-values for the estimated co-
efficients. The Coefficient column displays the names of the estimated coefficients used in
markets by default. Since variables can be simultaneously included in multiple equations,
the coefficient names use distinct prefixes for each equation. Demand coefficient names are
prefixed by D_, supply names are prefixed by S_, and the names of the price equation are
prefixed by P_. The correlation coefficient of the shocks is by default named RHO, and the
estimate of y (see eq. (8) or eq. (8)) is composed by concatenating the price variable’s name
with _DIFF.

In accordance with the usual economic intuition, estimated demand side price coefficients
(D_RM) are negative, while estimated supply side price coefficients (S__RM) are posi-
tive. Both the deterministic and stochastic adjustment models suggest that price changes
are responsive to shortages and surpluses as their estimated shortage response parameters
(RM_DIFF) are positive and have very small p-values.

4.4. Summarizing and visualizing market fits

The estimation examples of listings 2 to 6 return market_fit objects. These objects can be
used to summarize and visualize the fitted models.

Calling summary with a market_fit object as an input argument prints basic information
about the fit of the model to standard output. The output summary comprises four parts
separated by empty lines. The first part contains essential information concerning the model.
The second part contains information regarding the estimation method of the model. The



16 The R Package markets

third part includes the model’s estimated coefficients, their standard errors, z-values, and
p-values. Finally, the last part displays information about the model’s maximized likelihood.

Listing 7 shows part of the market fit summary for the deterministic adjustment model
estimated in listing 3 (some rows of the output are truncated for brevity). The first part of
the summary informs the user about the estimated model in its unindented heading. Then,
it describes the specification of the model’s equations and gives basic information about
the sample separation and the used variables. The second part of the output of summary
succeeds the heading ‘Maximum likelihood estimation’ It shows the optimization algorithm,
convergence status, and used starting values. The third and fourth parts are similar to the
estimation summaries of 1m and bbmle objects.

Listing 7: Market model fits’ summaries.
R> summary(da)

Deterministic Adjustment Model for Markets in Disequilibrium

Demand RHS : DRM + D_TREND + D_W + D_CSHS + D_L1RM + D_L2RM + D_MONTH
Supply RHS : S_RM + S_TREND + S_W + S_L1RM + S_MA6DSF + S_MA3DHF + S_MONTH
Short Side Rule : HS = min(D_HS, S_HS)

Separation Rule : RM_DIFF analogous to (D_HS - S_HS)

Shocks : Correlated

Nobs : 129

Sample Separation : Demand Obs = 18, Supply Obs = 111

Quantity Var : HS

Price Var : RM

Key Var(s) : ID, TREND

Time Var : TREND

Maximum likelihood estimation

Method : BFGS
Max Iterations : 5000
Convergence Status : success
Starting Values
D_RM D_CONST D_TREND D_W D_CSHS D_L1RM D_L2RM

7.528e-02 7.462e+01 2.432e+00 2.395e+00 -1.977e-02 1.512e-01 -3.291e-01

S_MONTH12  RM_DIFF D_VARIANCE S_VARIANCE RHO
1.094e+01 -2.368e-15 1.960e+02 1.035e+02 0.000e+00

Coefficients

Estimate Std. Error z value Pr(z)
D_RM -4.10591 0.640274 -6.4127 1.429e-10
D_CONST 42.07057 0.038850 1082.8885 0.000e+00
D_TREND -1.67249 0.138488 -12.0768 1.400e-33
D W 1.33892 1.200149 1.1156 2.646e-01
RHO 0.15624 0.166791 0.9367 3.489e-01
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-2 log L: 1724.66

An alternative way to inspect the market fit is via the plot function. Compared to summary,
plot provides a more concise representation of the fit, primarily focusing on the estimated
price coefficients. Figure 3 contains the output of calling plot with input arguments the fits
of listings 2 to 6 (e.g., plot(eq), plot(bs), etc.).

The (red) circles in each plot of fig. 3 correspond to the price-quantity points of the data frame
used to estimate the model. The (blue) dotted line represents the average, estimated demand
as a function of price. The line is obtained by calculating the fitted demanded quantity for
each price point of the figure’s domain using the sample’s average values for the remaining
control variables. For example, the demand of the equilibrium model of fig. 3 is calculated by

T 12
R 1 R A A A A A R
D(p) = &%+ = >~ | B3 + Bit + BEWi + BYCSHS, + B{RMy1 + PSRMy o + 3 B, MONTH;y |,
t=1 1=2

where hats are used to denote estimated coefficients. The (orange) dashed lines represent
average supplies as functions of prices and are analogously calculated.

The estimated price coefficients are relevant both in policymaking and in business appli-
cations. Using the plot function, the user can quickly assess whether the estimated price
coefficients have the expected signs. Microeconomic theory suggests that the relationship
between demanded quantities and prices is nonpositive?, while between supplied quantities
and prices is nonnegative.

4.5. Fitted quantities and aggregation

Using the estimated market models, one can obtain fitted values of the (unobserved) de-
manded and supplied quantities. The package markets automates these calculations with the
functions demanded_quantities and supplied_quantities. For example, listing 8 calcu-
lates the fitted values for the stochastic adjustment model estimated in listing 6. Specifically,
it calculates

12
Dy = & RM; + 3§ + Biit + B§W, + BICSHS, + >~ B4, ,MONTH;,
=2
A A A A A A~ 12 A~
S¢ = G°RMy + B3 + Bt + B3Wi + B3RMy—y + B3RM;_» + B3MAg(DSF,) + B{MA;(DHF,) + Y B3, ;MONTH;,
=2

for each time point ¢ in the house_data data frame.

Listing 8: Fitted demanded and supplied quantities.

R> demanded <- demanded_quantities(sa)
R> supplied <- supplied_quantities(sa)

The functions demanded_quantities and supplied_quantities return vectors with a fitted
value for each observation in the sample. For example, the fitted values of listing 8 are plotted

17
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Figure 3: Market fits’ visualizations.
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Figure 4: Fitted demanded and supplied quantities.
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against time in fig. 4. In this example, the fitted demanded and supplied quantities are highly
seasonal, with the demand side being more volatile than the supply side.

On some occasions, examining the fitted demand and supply at an aggregate market level is
more relevant than at an individual value level. For example, macroeconomic policymakers
are primarily interested in aggregate market demand and supply when designing taxation.
The functions aggregate_demand and aggregate_supply of markets calculate aggregated
fitted quantities. The functions have two modes depending on the nature of the data frame
used to estimate the passed fitted model. For panel data frames, i.e., for data with more than
one entity observation per time point, the aggregation functions return a vector of aggregate
fitted quantities per time point. For time series data frames, such as the house_data data
frame of this example, aggregation occurs over all time points.

Listing 9 exemplifies the aggregation functionality using the equilibrium (first command)
and stochastic adjustment (second command) models. As the market clearing identification
condition implies, aggregate demand and supply are almost equal for the equilibrium model.
For the stochastic adjustment model, the fitted aggregate demand is greater than the fitted
aggregate supply, which indicates that the market operated on aggregate in a shortage state.

Listing 9: Aggregate fitted quantities.

R> c(demand = aggregate_demand(eq), supply = aggregate_supply(eq))

4Many textbooks refer to this relationship as the law of diminishing demand. The characterization of the
relationship as a law is meant to indicate that this is the predominantly observed relationship in most market
settings. However, there are also documented counterexamples, e.g., Giffen goods.
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demand  supply
15182.56 15182.75

R> c(demand = aggregate_demand(sa), supply = aggregate_supply(sa))

demand  supply
22905.93 15723.14

4.6. Analysis of shortages

The package provides an extensive range of options regarding the analysis of shortages and
surpluses. The fitted shortages én,t = f)n,t — S”nyt are calculated by calling shortages.
The function shortages is a convenience function that calculates the differences between
demanded_quantities and supplied_quantities (for example, compare figs. 4 and 5). It
returns a vector of shortages, one for each observation in the sample.

Figure 5 plots the shortages for the stochastic adjustment model fit of listing 6. Values below
the zero horizontal line indicate an estimated market surplus for the given date, while values
above indicate estimated market shortages.

Figure 5: Fitted shortages.

Shortage

Based on the estimated shortages, the sample can be separated (post estimation) into subsets
of observations exhibiting excess demand and supply. The sample separation for each pre-
dicted state can be easily obtained using the shortage_indicators function, which returns a
vector of Boolean values indicating whether the corresponding sample observation has a pos-
itive fitted shortage. For example, listing 10 confirms the visual finding of fig. 5, suggesting
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that most of the sample’s observations lie in an excess demand state for the fitted stochastic
adjustment model.

Listing 10: Shortage indicators.

R> c(no_shortages = sum(shortage_indicators(sa)),
+ no_surpluses = sum(!shortage_indicators(sa)))

no_shortages no_surpluses
88 40

Fitted shortages are measured in quantity units, which prevents their comparison across
and within samples due to potential scaling differences. For example, a shortage of €10.000
housing credit for an observation in which supply is €100.000 is 10% relative to the supplied
credit, while 100% when supply is €10.000. The lack of access to trade credit is more severe
in the second case. The markets provides normalization methods that mitigate comparability
problems.

One way to normalize shortages is via the shortage standard deviation. For example, an
estimate of the standard deviation of the expected shortage in the deterministic adjustment
model can be calculated by

6G = 1\/63+ 62 — poads.

Listing 11 calculates this estimate by applying shortage_standard_deviation on the deter-
ministic adjustment fit of listing 3.

Listing 11: Shortage standard deviation.
R> shortage_standard_deviation(da)

shortage_standard_deviation
27.64522

Then, normalized shortages can be calculated by

A

S n,t
Npy = =

y A

oG

In markets, normalized shortaged are obtained by calls to normalized_shortages. Figure 6a
depicts the histogram of estimated normalized shortages of the deterministic adjustment fit.
The normalization performed by normalized_shortages is common for observations in the
sample. An altretnative normalization is given by

R o Gn,t
n,t — A 9
Sn,t

which calculates shortages relative to supply. Since estimated supplied quantities are ob-
servation specific, the normalization of R is idiosyncratic. Figure 6b depicts the histogram
of estimated relative shortages of the deterministic adjustment fit obtained by the function
relative_shortages.
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Figure 6: Normalized shortages, relative shortages, and shortage probabilities.
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The last unit-free way to examine estimated shortages in markets, albeit indirectly, is via
the shortage_probabilities function. The function calculates an estimate 7g of eq. (5)
based on the normality assumptions of the shocks. The histogram of the estimated shortage
probabilities for the deterministic adjustment model is depicted in fig. 6c.
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4.7. Marginal effects

Marginal effects give estimates of the impact of changes on control variables on market short-
ages. This can be helpful for variables that simultaneously affect multiple equations of the
market model’s system. For example, prices affect both demand and supply in the determin-
istic adjustment specification of listing 3. Thus, a price change affects the system via two
channels, one from the demand and one from the supply side. The overall effect of the change
can be examined by looking at the partial derivative of the normalized shortage with respect
to prices, i.e.

ON at — b

MRM = = .
ORM \/O‘?l + 02— 2pogos

Had demand or supply been inelastic, only o or correspondingly a® would have been present
in the numerator of the marginal effect.

Listing 12 exemplifies the calculation Mgy in markets. The second command calculates
the impact of a marginal price change on the fitted shortages for both the stochastic and
deterministic adjustment models using the function shortage_marginal. The price variable
name RM is prefixed by B to indicate that price coefficients are present on both the demand
and supply sides. Variables that are present on only one market side are prefixed differently.
Supply side variables are prefixed with S, while demand side variables are prefixed with D.

Listing 12: Marginal effects.

R> fits <- c(sa = sa, da = da)
R> sapply(fits, function(m) shortage_marginal(m, "RM"))

sa.B_RM da.B_RM
-0.08039316 -0.15933816

Shortages’ marginal effects are state-independent because their partial derivative expression
involves constant model parameters for all market states. Hence, the marginals of observations
with large and small shortages are equal irrespective of the state of the market. In contrast,
marginal effects on shortage probabilities are state-dependent. As a result, the marginal effects
of observations with large shortages differ from those of observations with small shortages.

There are many ways to evaluate the market impact of a control change on shortage prob-
abilities with state dependencies. One of them is to calculate the average marginal effect,
ie.

OP(N)

E
ORM

= Mgy Ep(N),

where ¢ denotes the normal density of the difference of the shocks (u? —u*) and ® the normal
distribution. An alternative evaluation involves calculating the marginal effect at the average
shortage, namely
OP(EN)
ORM

All three marginal effects have the same sign because the standard normal density is positive.

= Mg o(EN).

23
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Listing 13 calculates probability marginals for M As(DHF') and CSHS for the fitted stochas-
tic and deterministic adjustment models. The first command of listing 13 calculates the mean

marginal effects of M As(DHF), while the second command calculates marginal effects of
CSHS at the mean.

Listing 13: Marginal effects.
R> sapply(fits, function(m) shortage_probability marginal(m, "MA3DHF"))

sa.S_MA3DHF  da.S_MA3DHF
-0.0003175413 -0.0003719703

R> sapply(fits, function(m) {
+ shortage_probability_marginal (m, "CSHS", aggregate = "at_the_mean")
+ P

sa.D_CSHS  da.D_CSHS
3.755919¢-08 2.323357e-04

5. Estimation benchmarks

A major difficulty in estimating models for markets in disequilibrium comes from their com-
putational complexity. Dorsey and Mayer (1995) classify the estimation of disequilibrium
models among the most demanding econometric estimation problems, as the likelihoods of
these models have poles and non-unique local maxima. The authors propose a genetic al-
gorithm optimization method for estimating the basic model and compare its computational
performance with Nelder-Mead. Instead, the classic estimation approach proposed by Mad-
dala (1986) obtains maximum likelihood estimates using a global, iterative Newton method.
Zilinskas and Bogle (2006) use random interval arithmetic optimization for locating global
maxima. They apply the technique to the basic model with independent shocks using the
dataset of Fair and Jaffee (1972) to assess its performance experimentally. Bowden (1978) con-
siders the deterministic and stochastic adjustment models and proposes a re-parametrization
that allows their estimation using more straightforward procedures. Instead, Quandt and
Ramsey (1978) estimate the stochastic adjustment model with a methodology based on the
moment generating function of the likelihood.

The benchmarks of this section compare the computational performance of the maximum
likelihood estimation procedure for three of the optimization options that markets provides.
Specifically, the analysis compares the mean estimation time of likelihood maximizations via
BFGS with analytically calculated gradients, BFGS with numerically approximated gradients,
and Nelder-Mead’s simplex method. The execution time statistics are calculated using col-
lected measurements from a series of benchmarking simulations performed in the CSC cluster
of Goethe University. The benchmark data are collected from one water-cooled computing
node with 2 Intel Xeon E5-2670 v2 (Ivy Bridge) CPUs, 10 cores per CPU, and hyper-threading
(in total 40 logical processors). One logical processor is left unused to make space for other
operations and minimize the scheduling competition between benchmark and system tasks.

The models are simulated using both random coefficients and samples drawn from normal
distributions. The sample data are generated using the structural assumptions of each model
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and the randomly drawn coefficients. Estimating the models using BFGS with numerically
approximated gradients is the most error-prone procedure among the three examined algo-
rithms because numerical differentiation can fail nearby likelihood poles. For this reason, an
untimed estimation using BFGS with numerically approximated gradients is executed for each
simulation to ensure that the collected statistics accurately measure execution times and are
not biased by estimation failures. If the estimation succeeds, the simulated data are used in
timed executions. If the untimed estimation fails, new coefficients and data are regenerated.

Each model is simulated 100 times for 14 different sample sizes and 14 different model param-
eters. The observation points grow exponentially according to the mapping p — 5(2P+! +10)
for p=1,...,14. The parameter points grow linearly by adding one coefficient in the demand
and supply equations. It is ensured that the simulated data are economically well behaved
in all simulation cases. If shortages or surpluses represent more than 90% of the sample, the
simulated data are discarded, and a new simulation is initiated. Each well-behaved simulated
dataset is used to estimate the model with all three optimization options to allow the com-
parability of the resulting statistics. The execution time is saved at the end of each round.
The saved time concerns only the estimation of the models and not their simulation or the
calculations of standard errors. The estimation tolerance is kept constant for all optimiza-
tion methods. The processors are warmed up using 2 untimed estimations performed at the
beginning of the process.

Figure 7: Equilibrium model estimation time benchmarks.

(a) Over observations. (b) Over parameters.

Method

BFGS with Caclulated Gradient
— BFGS with Numerical Gradient
Nelder Mead

Method

BFGS with Caclulated Gradient
— BFGS with Numerical Gradient
Nelder Mead

=N

~

%

Estimation Time in Seconds (log2 scale)
Estimation Time in Seconds

&)

N
OGO A

NYCRNIENERY ‘ %)
AP A3 AN N NN ¢

16 18 20 22 24 26 28 30 32 34 36 38 40 42
Number of Observations (log2 scale) Number of Parameters

Appendix B details the data generating process of each model. Markets exposes this sim-
ulation functionality via the functions simulate_data and simulate_model. The results
of the benchmarking simulations are depicted in figures 7 (for the equilibrium_model), 8
(diseq_basic), 9 (diseq_directional), 10 (diseq_deterministic_adjustment), and 11
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Figure 8: Basic model estimation time benchmarks.

(a) Over observations.
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Figure 9: Directional model estimation time benchmarks.
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Figure 10: Deterministic adjustment model estimation time benchmarks.

(a) Over observations.
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Figure 11: Stochastic adjustment model estimation time benchmarks.

(a) Over observations.
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(diseq_stochastic_adjustment). The vertical axes of the figures measure the estimation
times of each optimization option. The horizontal axes of figs. 7a, 8a, 9a, 10a and 11a mea-
sure the number of observations of the simulated sample for a constant number of simulated
parameters®. The horizontal axes of figs. 7b, 8b, 9b, 10b and 11b measure the number simu-
lated parameters for a constant sample size of 41,010 observations. The points of solid lines
represent mean estimation times over 100 estimations, and dotted lines depict one standard
deviation intervals from the measured means.

The parameter benchmarks exhibit a similar pattern for all five models. Small changes in
the number of estimated parameters do not significantly affect estimation times. Out of the
three compared methods, Nelder-Mead results on average to the lengthiest estimation times
and the greatest estimation time variability. BEFGS with calculated gradients has the shortest
estimation time and the least variability. Compared to BFGS with numerically approximated
gradients, which offers the fastest alternative, BFGS with calculated gradients executes 1.84
times faster for the equilibrium, 7.02 the basic, 6.82 the directional, 3.41 the deterministic
adjustment, and 8.7 for the stochastic adjustment model.

The ordering of the methods in terms of estimation time is the same for the benchmarks over
a growing number of observations. In all cases, BFGS with analytically calculated gradients
is the most efficient estimation option among those compared. The estimation times of
all methods grow exponentially in the sample size for the basic, deterministic adjustment,
and stochastic adjustment models. A different pattern is observed from the equilibrium
and directional models. For sample sizes below 5,170 observations, the estimation times
for BFGS optimizations mostly remain constant, while the Nelder-mead estimation times
reduce. Eventually, exponential growth is observed for larger sample sizes in the equilibrium
and directional models.

6. Conclusion

This article introduces the R package markets. The package provides a common interface
that unifies the estimation and harmonizes the post-estimation analysis of diverse market
models with various structural assumptions. Its methods are used for estimating, simulating,
and analyzing five market models; a market clearing model and four short side rule models.
In addition, the package provides methods to aggregate, summarize, and visualize the fitted
market models. Special emphasis is given to the analysis of market shortages.

The article begins by reviewing the equilibrium and disequilibrium econometrics upon which
it relies. Then, it dwells into the details of its object-oriented design of the common interface
implementation while comparing its approach with its closest alternatives. Next, the core
functionality of the package is exemplified via an empirical example using the classic dataset
of Fair and Jaffee (1972). Based on this dataset, examples of estimating, visualizing, and
summarizing the five market models of the package are presented. Finally, the obtained
market fits are further used to exemplify the post estimation functionality capabilities of

5The number of parameters depends on the simulated model. The equilibrium and basic models use 14
parameters, namely 6 demand, 5 supply, 2 variances, and 1 correlation parameters. The directional model uses
13 parameters because prices cannot be used on both sides of the market. The deterministic adjustment model
uses 15 parameters since it introduces an additional parameter in the price dynamics. Lastly, the stochastic
adjustment model uses 20 parameters, 3 of which are introduced in the price dynamics, 1 additional variance,
and 2 correlations.
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the package concerning fitted (unobserved) demanded and supplied quantities, as well as
predicted shortages.

The estimation functionality of markets is based on analytic gradient and Hessian expressions
for the likelihoods of the implemented market models. These expressions are not available
in other statistical software. This implementation feature attributes to markets a computa-
tional edge in terms of estimation time efficiency. The article documents the computational
benefits of the package’s estimation functionality by presenting a series of estimation time
statistics based on data collected from large-scale benchmarking simulations. Compared to
the fastest estimation alternative not using the expressions employed by default in markets,
the benchmark statistics indicate that one can estimate the models of the package from 1.84
(equilibrium model) to 8.7 (stochastic adjustment model) times faster.
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A. Installation

When building markets from its source code, parts of the package’s native functionality
are enabled or disabled based on the availability of two shared libraries in the target ma-
chine. Specifically, the package attempts to locate the GNU Scientific Library (gsl) and
the Threading Building Blocks library (tbb), which are used in the native likelihood max-
imization routine for the equilibrium model. Native sources are compiled with the macros
_MARKETS_HAS_GSL_ and _MARKETS_HAS_EXECUTION_POLICIES_ defined, if correspondingly
gsl and tbb are located.

The function maximize_log_likelihood relies on the gsl_multimin.h header. If gsl is not
located in the target system, maximize_log_likelihood becomes vacuous. The function is
still exported by the package, but calling it results to void execution. This scenario cannot
occur in builds for which the ReppGSL (2021) package is installed. When installing from
CRAN using install.packages, ReppGSL (2021) is also installed among other dependencies,
and the GSL functionality is enabled by default.

The dependency on tbb comes from the GCC implementation of the par_unseq execution
policy of the C++17 standard. At the moment of writing, the par_unseq feature is supported
by two C++ compilers, namely GCC (version 9 and above) and MSVC (version 19.28 and above).
The GCC implementation of par_unseq requires linking to the tbb library. Thus, markets
examines whether par_unseq is available in the system during configuration. If this is the case,
it enables the —std=c++17 compilation flag, links to tbb when building with GCC, and enables
some parallelization optimizations in the gradient calculations of maximize_log_likelihood.
If tbb is not located, versions of the native sources with serialized gradient calculations are
compiled.

B. Simulation details

Two simulation options are available for each market model provided by markets. The user
can generate a dataset based on the stochastic process implied by a market model (i) with
and (i7) without initializing a model object. Option (i) accommodates situations when the
data is intended to be used with a single setup, while (i7) when used with multiple setups.
These two options are accessed by correspondingly calling the methods simulate_model and
simulate_data. The first method is a wrapper of the second method combined with a
constructor call. The simulation functionality is employed by the unit tests of markets, some
of its documentation examples and vignettes, and the benchmarking exercises of this article.

All simulation functions follow the baseline specifications for demand and supply equations
given by egs. (1) and (2). In equilibrium model simulations, prices are not simulated. Instead,
they are calculated so that the market clears, i.e.

k j kS ‘7 k A7d
S (=) X B — B+ X BN — 5 X s, —
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In basic model’s simulations, prices are simulated similarly to the remaining control variables.
The demanded and supplied quantities are subsequently calculated, and the observed quantity

is determined by the short side rule (eq. (4)). In the directional model, prices are also
simulated similarly to the remaining controls. Then, price differences are calculated, and the
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quantities are set according to the separation rule of the sample. If the condition AP, ; >
0 = Dy > Sp, is satisfied, the traded quantity is calculated using the supply equation. If
not, it is calculated by the demand equation. An out-of-sample initial price value is drawn for
the deterministic adjustment model, and the remaining prices are then sequentially generated
by the rule
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The procedure for the stochastic adjustment is similar to that of the deterministic adjustment
model. The price generation rule with stochastic dynamics is given by
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where Einstein summation notation over j is used to save some space. The simulation methods
perform various validity checks in the generated data and instruct the user to reparametrize
the model if any of them fails. For instance, it is ensured that simulated samples of disequi-
librium models do not exclusively contain demand or supply observations.

A call to simulate_data requires specifying the model that is to be simulated by passing the
corresponding model string used in initialization calls as the first argument. The number of ob-
servations is set by the product of the arguments nobs (number of subjects) and tobs (number
of time points). The model parameters are specified by alpha_d, beta_d0, beta_d, eta_d,
alpha_s, beta_sO, beta_s, eta_s, gamma, beta_pO, beta_p, sigma_d, sigma_s, sigma_p,
rho_ds, rho_dp, rho_sp. The argument names follow the notation of this article, and corre-
spond to the symbols of egs. (1), (2), (4), (7) and (8). The default value of all variances is
one, and the correlations is zero. The caller can optionally pass values for the seed, verbose,
price_generator, and control_generator arguments. The last two options expect a func-
tion callback that is given an integer n and returns n randomly generated values. The default
generators return standard normally distributed values.

The simulate_model call extends the calling convention of simulate_data. The given param-
eter and generator arguments passed down to simulate_data are specified as a list through
the simulation_parameters input argument. Values for the optional arguments seed and the
verbose can be specified separately from the simulation_parameters list. Any additional
arguments given to simulate_model are passed down to the specified model’s construction
call.

C. Comparison of equilibrium estimates

The equilibrium_model can be estimated using different methods and tools having distinct
characteristics. The two stage least square method is recommended because it is the least
computationally intensive method. Maximum likelihood estimation can still be helpful when
comparing equilibrium and disequilibrium models via information criteria. In most systems,
there are either no, or negligible gains from resorting to the native optimization option that the
package offers. For estimation exercises with large datasets, native optimization functionality
can be faster in systems with many processors, such as computing clusters. Nevertheless, all
approaches give similar results.
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The exercise of this appendix exemplifies the above claim by comparing the estimates obtained
by fitting the equilibrium model using different tools and methods for a simulated dataset with
20, 000 observations. The simulated equilibrium model has, besides prices and a constant, two
demand covariates (X{ and X¢), one supply covariate (X{), and two market-wide covariates
(X7 and X3). Moreover, it allows for temporal correlation between demand and supply shocks
(p). Listing 14 uses simulate_model to simulate the model (see appendix B for details on
simulation functionality).

Listing 14: Equilibrium model simulation.

R> seed <- 25
R> parameters <- list(
nobs = 4000, tobs = 10,
alpha_d = -1.7, beta_d0 = 14.9, beta_d = c(2.3, -1.2),
eta_d = ¢c(-1.3, -1.1),
alpha_s = 1.6, beta_s0 = 10.2, beta_s = c(-1.3), eta_s = c(2.5, 2.2),
sigma_d = 2.1, sigma_s = 2.5, rho_ds = -0.1

+ + + + + +

)

R> mdl <- simulate_model ("equilibrium_model", parameters, seed, verbose = 2)

Info: This is 'Equilibrium with correlated shocks' model

Listing 15 uses the available options in markets to estimate the simulated model. The func-
tion maximize_log_likelihood wraps GSL calls to estimate the equilibrium model using
gsl multimin_fdfminimizer_vector_bfgs2. The objective_tolerance and gradient_tolerance
arguments control the accuracy of the optimization. The step argument sets the first trial

step size that the minimizer uses®.

Listing 15: Equilibrium model estimation.

R> optim_fit <- estimate(mdl)
R> gsl_fit <- maximize_log_likelihood(

+ mdl,

+ step = le+0, max_it = le+4,

+ objective_tolerance = le-2, gradient_tolerance = le-2
+ )

R> 1s_fit <- estimate(mdl, method = "2SLS")

Table 3 summarizes the results. Parentheses report absolute differences between the estimated
and simulated parameters. The last row calculates the average mean absolute error for each
estimation option.

D. Model initialization

Section 4 uses the equilibrium_model, dise_basic, dise_deterministic_adjustment,
dise_directional, and , dise_stochastic_adjustment to initialize and estimate the cor-
responding market models in a single call. Markets provides methods to separate these two

6See the GSL documentation for more information about the used multidimensional minimization routines.
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Table 3: Comparison of equilibrium estimation methods and tools.

coef sim gsl Is optim
D P -1.70  -1.7422 (0.0422) -1.7421 (0.0421) -1.7421 (0.0421)
D_CONST 14.90  14.9590 (0.0590) 14.9590 (0.0590) 14.9590 (0.0590)
D_Xd1 2.30  2.3250 (0.0250)  2.3250 (0.0250)  2.3250 (0.0250)
D Xd2 -1.20  -1.2130 (0.0130) -1.2130 (0.0130) -1.2130 (0.0130)
D_X1 -1.30  -1.3582 (0.0582) -1.3582 (0.0582) -1.3582 (0.0582)
D_X2 -1.10  -1.1556 (0.0556) -1.1556 (0.0556) -1.1556 (0.0556)
S_ P 1.60  1.5990 (0.0010)  1.5990 (0.0010)  1.5990 (0.0010)
S _CONST 10.20  10.2091 (0.0091) 10.2091 (0.0091) 10.2091 (0.0091)
S_Xsl -1.30  -1.2922 (0.0078) -1.2922 (0.0078) -1.2922 (0.0078)
S_X1 2.50  2.5055 (0.0055)  2.5055 (0.0055)  2.5055 (0.0055)
S_X2 220  2.2197 (0.0197)  2.2197 (0.0197)  2.2197 (0.0197)
D_VARIANCE 441  4.5677 (0.1577)  4.5682 (0.1582)  4.5682 (0.1582)
S_VARIANCE 6.25  6.1993 (0.0507)  6.2001 (0.0499)  6.2001 (0.0499)
RHO -0.10  -0.1090 (0.0090) -0.1090 (0.0090) -0.1090 (0.0090)
MEAN__ABS_ERR - 0.0367 0.0366 0.0366

steps, which can be convenient in some workflows. Market models can be constructed with-
out being estimated using the new function. Subsequently, the market_fit objects can be
obtained by calling estimate with a previously constructed model object as an argument.

D.1. Initialization

The initialization arguments of the constructors for all models mostly coincide. Each model
initialization requires specifying the model class, the used data frame, the identifiers of the
dataset, the quantity and price variables, and the demand and supply right-hand side spec-
ifications. The construction operation for the stochastic adjustment model, which involves
nontrivial price dynamics, additionally requires specifying the price equation. Furthermore,
one can choose whether the initialized model should allow the shocks of the stochastic equa-
tions to be correlated and the verbosity level with which the operations of the constructed
object should emit messages to the user.

Listing 16 constructs objects for each model using the corresponding initialization options of
listings 2 to 6 of section 4. The constructors create model formulas (see section 4.2) using the
quantity, price, subject, time (left-hand side of formula), demand, supply, and, if present,
price_dynamics arguments (right-hand side of formula). These variables quantity, price,
subject, and time are expected to be of type language and the variable demand, supply, and
price_dynamics are expected to follow the syntax of formula. Indicator variables for factor
type columns included in the market equations are automatically created by the constructors.

Listing 16: Model initialization.

R> eq <- new("equilibrium_model",
+ quantity = HS, price = RM, subject = ID, time = TREND,
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demand = RM + TREND + W + CSHS + L1RM + L2RM + MONTH,
supply = RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
house_data

+
+
+
+ )
R> da <- new("diseq_deterministic_adjustment",

+ quantity = HS, price = RM, subject = ID, time = TREND,
demand = RM + TREND + W + CSHS + L1RM + L2RM + MONTH,
supply = RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
house_data, verbose 2

+ + + +

)
Info: This is 'Deterministic Adjustment with correlated shocks' model
Warning: Dropping 14 rows due to missing values.

Info: Dropping 1 rows to generate 'LAGGED_RM'.
Info: Sample separated with 18 rows in excess supply and 111 in excess demand state.

R> dr <- new('"diseq_directional",

quantity = HS, price = RM, subject = ID, time = TREND,
demand = TREND + W + CSHS + L1RM + L2RM,
supply = RM + TREND + W + MA6DSF + MA3DHF + MONTH,

house_data

+ + + + +

)

R> bs <- new("diseq_basic",

+ quantity = HS, price = RM, subject = ID, time = TREND,
demand = RM + TREND + W + CSHS + L1RM + L2RM + MONTH,
supply = RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
house_data, verbose = 2, correlated_shocks = FALSE

+ + + +

)
Info: This is 'Basic with independent shocks' model
Warning: Dropping 14 rows due to missing values.

R> sa <- new("diseq_stochastic_adjustment",

quantity = HS, price = RM, subject = ID, time = TREND,

demand = RM + TREND + W + CSHS + MONTH,

supply = RM + TREND + W + L1RM + L2RM + MA6DSF + MA3DHF + MONTH,
price_dynamics = TREND + L2RM + L3RM,

house_data 7>J, dplyr: :mutate(L3RM = dplyr::lag(RM, 3)),
correlated_shocks = FALSE

+ + + + + + +

D.2. Model summaries

The show and summary functions display short and more extended information about con-
structed model objects in the standard output. Listing 17 gives an example of the dis-
played information. The output of these two commands is also displayed at the beginning of
market_fit object summaries (see listing 7).
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Listing 17: Model objects’ output operations.
R> show(dr)

Directional Model for Markets in Disequilibrium

Demand RHS : DTREND + D W + D_CSHS + D_L1RM + D_L2RM

Supply RHS : S_.RM + S_TREND + S_W + S_MA6DSF + S_MA3DHF + S_MONTH
Short Side Rule : HS = min(D_HS, S_HS)

Separation Rule : RM_DIFF >= 0 then D_HS >= S_HS

Shocks : Correlated

R> summary(sa)

Stochastic Adjustment Model for Markets in Disequilibrium

Demand RHS : D.RM + D_TREND + D_W + D_CSHS + D_MONTH
Supply RHS : S_RM + S_TREND + S_W + S_L1RM + S_L2RM + S_MA6DSF + S_MA3DHF +
Supply RHS : S_MONTH

Price Dynamics RHS: (D_HS - S_HS) + TREND + L2RM + L3RM
Short Side Rule : HS = min(D_HS, S_HS)

Shocks : Independent

Nobs : 128

Sample Separation : Not Separated

Quantity Var : HS

Price Var : RM

Key Var(s) : ID, TREND

Time Var : TREND

D.3. Estimation

Model objects are estimated by calling estimate. For completeness, listing 18 replicates the
estimations of section 4.3. Essentially, the elements of the list estimation_options in the
calls of listings 2 to 6 are directly passed as input arguments when calling estimate.

Listing 18: Model estimation.

R> eq <- estimate(eq, control = list(maxit = 5000))
R>
R> da <- estimate(da, control = list(maxit = 5000))
R>

R> dr <- estimate(dr, method = "Nelder-Mead", control = list(maxit = 5000))
R>

R> start <- coef(eq)

R> start <- start[names(start) != "RHO"]

R> bs <- estimate(bs, start = start, control = list(maxit = 5000))

R>

R> sa <- estimate(sa, control = list(maxit = 5000), standard_errors = c("W"))
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The optimization method is selected by the method argument of the estimate function. When
the passed value is among "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", and "Brent",
the model is estimated using full information maximum likelihood. When the method is set
equal "28LS" for the equilibrium model the model is estimated using two-stage least squares.

The default value of the gradient argument is "calculated", which instructs the estimate
call to use analytically calculated gradient expressions whenever compatible with the opti-
mization method. Alternatively, numerical gradient approximation can be used by setting
gradient equal to "numeric".

The default value of the hessian input argument accepts one of the values "skip", "numerical",
and "calculated". The default is to use the "calculated" Hessian for the models that
expressions are available and the "numerical" Hessian in other cases. Calculated Hessian ex-
pressions are only available for the basic and directional models. The "skip" option abstains
from calculating the Hessian.

If the Hessian calculation is not skipped, "homoscedastic", "heteroscedastic", or clus-
tered standards errors can be calculated by setting the input argument standard_errors.
The default value is "homoscedastic". If the option "heteroscedastic" is passed, the
variance-covariance matrix is calculated using heteroscedasticity adjusted standard errors by
the sandwich estimator. Clustered standard errors are calculated when a vector with variable
names is supplied (see, e.g., the stochastic adjustment model estimation in listing 18). In this
case, the variance-covariance matrix is calculated by grouping the score matrix based on the
passed variables.
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