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Abstract

mhurdle is a package for R enabling the estimation of a wide set of regression models
where the dependent variable is left censored at zero, which is typically the case in house-
hold expenditure surveys. These models are of particular interest to explain the presence
of a large proportion of zero observations for the dependent variable by means of up to
three censoring mechanisms, called hurdles. For the analysis of censored household ex-
penditure data, these hurdles express a good selection mechanism, a desired consumption
mechanism and a purchasing mechanism, respectively. mhurdle models are specified in a
fully parametric form and estimated using the maximum likelihood method for random
samples. Model evaluation and selection are tackled by means of goodness of fit measures
and Vuong tests. Software rationale and user’s guidelines are presented and illustrated
with actual examples.

Keywords:˜households’ expenditure survey analysis, censored regression models, hurdle mod-
els, maximum likelihood estimation, nonlinear goodness of fit measures, Vuong tests for model
selection, R.

1. Introduction

Data collected by means of households’ expenditure survey may present a large proportion
of zero expenditures due to many households recording, for one reason or another, no expen-
diture for some items. Analyzing these data requires to model any expenditure with a large
proportion of nil observations as a dependent variable left censored at zero.

Since the seminal paper of Tobin (1958), a large econometric literature has been developed
to deal correctly with this problem of zero observations. The problem of censored data has
been treated for a long time in the statistics literature dealing with survival models which
are implemented in R with the survival package of Therneau and Lumley (2008). It has also
close links with the problem of selection bias, for which some methods are implemented in
the sampleSelection package of Toomet and Henningsen (2008b). It is also worth mention-
ing that a convenient interface to survreg, called tobit, particularly aimed at econometric
applications is available in the AER package of Kleiber and Zeileis (2008).

In applied microeconometrics, different decision mechanisms have been put forward to explain
the appearance of zero expenditure observations. The original Tobin’s model takes only one
of these mechanisms into account. With mhurdle, up to three mechanisms generating zero
expenditure observations may be introduced in the model1. More specifically, we consider the

1This package has been developed as part of a PhD dissertation carried out by Stéphane Hoareau (2009)
at the University of La Réunion under the supervision of Fabrizio Carlevaro and Yves Croissant.
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following three zero expenditure generating mechanisms.

A good selection mechanism (hurdle 1) . According to this mechanism, the consumer
first decides which goods to include in its choice set and, as a consequence, he can
discard some marketed goods because he dislikes them (like meat for vegetarians or
wine for non-drinkers) or considers them harmful (like alcohol, cigarettes, inorganic
food, holidays in dangerous countries), among others.
This censoring mechanism has been introduced in empirical demand analysis by Cragg
(1971). It allows to account for the non-consumption of a good as a consequence of
a fundamentally non-economic decision motivated by ethical, psychological or social
considerations altering the consumer’s preferences.

A desired consumption mechanism (hurdle 2) . According to this mechanism, once a
good has been selected, the consumer decides which amount to consume and, as a con-
sequence of his preferences, resources and selected good prices, its rational decision can
turn out to be a negative desired consumption level leading to a nil consumption.
The use of this mechanism to explain the presence of zero observations in family ex-
penditure surveys introduced by Tobin (1958). Its theoretical relevance has been later
rationalised by the existence of corner solutions to the microeconomic problem of ra-
tional choice of the neoclassical consumer. See section 10.2 of Amemiya (1985), for
an elementary presentation of this issue, and chapter 4 of Pudney (1989), for a more
comprehensive one.

A purchasing mechanism (hurdle 3) . According to this mechanism, once a consump-
tion decision has been taken, the consumer sets up the schedule at which to buy the
good and, as a consequence of its purchasing strategy, zero expenditure may be observed
if the survey by which these data are collected is carried out over a too short period
with respect to the frequency at which the good is bought.
This censoring mechanism has been introduced in empirical demand analysis by Deaton
and Irish (1984). It allows to account for the non-purchase of a good not because the
good is not consumed but because it is a durable or a storable good infrequently bought.
By the same token, this mechanism allows to derive from observed expenditures, the
rate of use of a durable good or the rate of consumption of a stored non durable good.

For each of these censoring mechanisms, a continuous latent variable is defined, indicating
that censoring is in effect when the latent variable is negative. These latent variables are
modelled as the sum of a linear combination of explanatory variables and of a normal random
disturbance with a possible correlation between the disturbances of different latent variables.
By combining part or the whole set of these censoring mechanisms, we generate a set of non-
nested parametric models that can be used to explain censored expenditure data depending
on the structural censoring mechanisms that a priori information suggests to be at work.

It is worth mentioning that, although this formal model has been primarily developed to deal
with censored household expenditure data, its practical scope is not restricted to empirical
demand analysis. A quite natural other area of application is represented by the empirical
analysis of labour supply. In this context, hurdle 1 can indeed be reinterpreted as a non-
economic mechanism of labour market participation; hurdle 2 as a desired working hours
mechanism based on the neoclassical model of labour supply that can generate negative
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desired working hours leading to a nil labour supply; hurdle 3 as an unemployment mechanism
explaining zero hours worked as a result of spells of unemployment. Note also that even within
the realm of demand analysis, the economic interpretation of hurdles 1, 2 and 3 may require
to be adapted to the specific features of available data, as we illustrate by an empirical
application presented at the end of the paper (see section˜5).

Our hurdle models are specified as fully parametric models allowing estimation and inference
within an efficient maximum likelihood framework. In order to identify a relevant model
specification, goodness of fit measures for model evaluation and selection, as well as Vuong
tests for discriminating between nested, strictly non nested and overlapping models have been
implemented in mhurdle package. Vuong tests remarkably permit to compare two competing
models when both, only one, or neither of them contain the true mechanism generating the
sample of observations. More precisely, such tests allow to assess which of the two competing
models is closest to the true unknown model according to the Kullback-Leibler information
criterion. Therefore, such symmetric tests are not intended, as classical Neyman-Pearson
tests, to pinpoint the chimeric true model, but to identify a best parametric model specifi-
cation (with respect to available observations) among a set of competing specifications. As
a consequence, they can provide inconclusive results, which prevent from disentangling some
competing models, and when they are conclusive, they don’t guarantee an identification of
the relevant model specification.

The paper is organised as follows: Section˜2 presents the rationale of our modelling strategy.
Section˜3 presents the theoretical framework for model estimation, evaluation and selection.
Section˜4 discusses the software rationale used in the package. Section˜5 illustrates the use
of mhurdle with several examples. Section˜6 concludes.

2. Modelling strategy

2.1. Model specification

Our modelling strategy is intended to model the level y of expenditures of a household for
a given good or service during a given period of observation. To this purpose, we use up to
three zero expenditure generating mechanisms, called hurdles, and a demand function.

Each hurdle is represented by a probit model resting on one of the following three latent
dependent variables relations: 

y∗1 = β>1 x1 + ε1

y∗2 = β>2 x2 + ε2

y∗3 = β>3 x3 + ε3

(1)

where x1, x2, x3 stand for column-vectors of explanatory variables (called covariates in the
followings), β1, β2, β3 for column-vectors of the impact coefficients of the explanatory variables
on the continuous latent dependent variables y∗1, y∗2, y∗3 and ε1, ε2, ε3 for normal random
disturbances.

• Hurdle 1 models the household decision of selecting or not selecting the good we consider
as a relevant consumption good, complying with household’s ethical, psychological and
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social convictions and habits. This good selection mechanism explains the outcome of a
binary choice that can be coded by a binary variable I1 taking value 1 if the household
decides to enter the good in its basket of relevant consumption goods and 0 otherwise.
The outcome of this binary choice is modelled by associating the decision to select the
good to positive values of the latent variable y∗1 and that to reject the good to negative
values of y∗1. Therefore, good selection or rejection is modelled as a probability choice
where selection occurs with probability P (I1 = 1) = P (y∗1 > 0) and rejection with
probability P (I1 = 0) = P (y∗1 ≤ 0) = 1− P (y∗1 > 0).
Note that if this mechanism is inoperative, this probit model must be replaced by a
singular probability choice model where P (I1 = 1) = 1 and P (I1 = 0) = 0.

• Hurdle 2 models the household decision of consuming or not consuming the selected
good, given its actual economic conditions. This desired consumption mechanism ex-
plains the outcome of a binary choice coded by a binary variable I2 taking value 1 if the
household decides to consume the good and 0 otherwise. The outcome of this binary
choice is modelled by associating the decision to consume the selected good to a positive
value of its desired consumption level, represented by the latent variable y∗2, and that of
not to consume the good to negative values of y∗2. Therefore, when this zero expenditure
generating mechanism is operative, it also models the level of desired consumption ex-
penditures by means of a Tobit model identifying the desired consumption expenditures
to the value of latent variable y∗2, when it is positive, and to zero, when it is negative.
Conversely, when the desired consumption mechanism is inoperative, implying that the
desired consumption cannot be a corner solution of a budget constrained problem of
utility minimisation, we must replace not only the probit model explaining the variable
I2 by a singular probability choice model where P (I2 = 1) = 1, but also the Tobit
demand function by a demand model enforcing non-negative values on the latent vari-
able y∗2. For the time being, two functional forms of this demand model have been
programmed in mhurdle, namely a log-normal functional form :

ln y∗2 = β>2 x2 + ε2 (2)

and a truncated Tobit model, defined by the second of the set of linear relationships˜(1)
with ε2 distributed as a normal random disturbance left-truncated at ε2 = −β>2 x2, as
suggested by Cragg (1971). Nevertheless, to avoid a cumbersome analytic presentation
of our models, in the following we only consider the log-normal model specification.

• Hurdle 3 models the household decision to purchase or not to purchase the good during
the survey period over which expenditure data are collected. This purchasing mechanism
also explains the outcome of a binary choice, coded by a binary variable I3 taking value
1 if the household decides to buy the good during the period of statistical observation
and 0 otherwise. The probit model we use associates the purchasing decision to positive
values of latent variable y∗3 and that of not purchasing to negative values of y∗3.
By assuming that consumption and purchases are uniformly distributed over time, but
according to different timetables entailing a frequency of consumption higher than that
of purchasing, we can also interpret the probability P (I3 = 1) = P (y∗3 > 0) as measuring
the share of purchasing frequency to that of consumption during the observation period.
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This allows to relate the observed level of expenditures y to the unobserved level of
consumption y∗2 during the observation period, using the following identity:

y =
y∗2

P (I3 = 1)
I1I2I3. (3)

When the purchasing mechanism is inoperative, the previous probit model must be
replaced by a singular probability choice model where P (I3 = 1) = 1. In such a case,
the observed level of expenditures is identified to the level of consumption, implying
y = y∗2I1I2.

A priori information may suggest that one or more of these censoring mechanisms are not in
effect. For instance, we know in advance that all households purchase food regularly, implying
that the first two censoring mechanisms are inoperative for food. In this case, the relevant
model is defined by only two relations: one defining the desired consumption level of food,
according to a log-normal specification or a truncated Tobit model, and the other the decision
to purchase food during the observation period.

Figure˜1 outlines the full set of special models that can be generated by selecting which of
these three mechanisms are in effect and which are not. It shows that 8 different models can
be dealt with by means of the mhurdle package.

Among these models, one is not concerned by censored data, namely model 1. This model
is relevant only for modelling uncensored samples. All the other models are potentially able
to analyse censored samples by combining up to the three censoring mechanisms described
above. With the notable exception of the standard Tobit model 3, that can be estimated also
by the survival package of Therneau and Lumley (2008) or the AER package of Kleiber and
Zeileis (2008), these models cannot be found in an other R package.

Some of mhurdle models have already been used in applied econometric literature. In par-
ticular, model 2 is a single-hurdle good selection model originated by Cragg (1971). The
double-hurdle model combining independent good selection (hurdle 1) and desired consump-
tion (hurdle 2) censoring mechanisms is also due to Cragg (1971). An extension of this
double-hurdle model to dependent censoring mechanisms has been originated by Blundell
and Meghir (1987).

P-Tobit model 7 is due to Deaton and Irish (1984) and explains zero purchases by combining
the desired consumption censoring mechanism (hurdle 2) with the purchasing censoring mech-
anism (hurdle 3). Model 4 is a single-hurdle model not yet used in applied demand analysis,
where the censoring mechanism in effect is that of infrequent purchases (hurdle 3).

Among the original models encompassed by mhurdle, models 6 is a double-hurdle model
combining good selection (hurdle 1) and purchasing (hurdle 3) mechanisms to explain censored
samples. Model 8 is an original triple-hurdle model originated in Hoareau (2009). This model
explains censored purchases either as the result of good rejection (hurdle 1), negative desired
consumption (hurdle 2) or infrequent purchases (hurdle 3).

To derive the form of the probability distribution of the observable dependent variable y, we
must specify the joint distribution of the random disturbances entering the structural relations
of these models.
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• Models 8 and 6 are trivariate hurdle models as they involve disturbances ε1, ε2 and ε3,
distributed according to the trivariate normal density function:

1

σ
φ
(
ε1,

ε2
σ
, ε3; ρ12, ρ13, ρ23

)
, (4)

where

φ(z1, z2, z3; ρ12, ρ13, ρ23) =
exp

{
−ρ11z2

1+ρ22z2
2+ρ33z2

3−2[ρ12z1z2+ρ13z1z3+ρ23z2z3]
2

}
√

(2π)3 | R |
,

with
|R| = 1− ρ2

12 − ρ2
13 − ρ2

23 + 2ρ12ρ13ρ23,

ρ11 =
1− ρ2

23

| R |
, ρ22 =

1− ρ2
13

| R |
, ρ33 =

1− ρ2
12

| R |
,

ρ12 =
ρ12 − ρ13ρ23

| R |
, ρ13 =

ρ13 − ρ12ρ23

| R |
, ρ23 =

(ρ23 − ρ12ρ13)

| R |
,

denotes the density function of a standard trivariate normal distribution and ρ12, ρ13,
ρ23 the correlation coefficients between the couples of normal standard random variables
z1 and z2, z1 and z3, z2 and z3, respectively. As the unit of measurement of ε1 and ε3
are not identified, these disturbances are normalised by setting their variances equal to
1.

• Models 7 and 4 are bivariate hurdle models as they involve disturbances ε2 and ε3,
distributed according to the bivariate normal density function:

1

σ
φ
(ε2
σ
, ε3; ρ23

)
, (5)

where

φ(z1, z2; ρ) =
exp

{
− z2

1+z2
2−2ρz1z2

2(1−ρ2)

}
2π
√

1− ρ2

denotes the density function of a standard bivariate normal distribution with correlation
coefficient ρ.

• Models 5 and 2 are also bivariate hurdle models but they involve disturbances ε1 and
ε2 which density function is therefore written as:

1

σ
φ
(
ε1,

ε2
σ

; ρ12

)
. (6)

• Finally, models 3 and 1 are univariate hurdle models involving only disturbance ε2,
which density function writes therefore:

1

σ
φ
(ε2
σ

)
, (7)
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where

φ(z1) =
exp

{
− z2

1
2

}
√

2π

denotes the density function of a standard univariate normal distribution.

A priori information may also suggest to set to zero some or all correlations between the
random disturbances entering these models, entailing a partial or total independence between
the above defined censoring mechanisms. The use of this a priori information generates, for
each trivariate or bivariate hurdle model of Figure 1, a subset of special models all nested
within the general model from which they are derived. For a trivariate hurdle model the
number of special models so derived is equal to 7, but for a bivariate hurdle model only
one special model is generated, namely the model obtained by assuming the independence
between the two random disturbances of the model.

In the following, we shall work out the distribution of our hurdle models in their general
case, but considering the difficulties of implementing trivariate hurdle models in their full
generality, for these models only the special cases of independence or dependence between
one of hurdles 1 or 3 and the desired consumption equation, which seems the most relevant
for empirical applications, have been programmed in mhurdle. The extension of our package
to more general model specifications is in progress.

2.2. Likelihood function

As for the standard Tobit model, the probability distribution of the observed censored variable
y of our hurdle models is a discrete-continuous mixture, which assigns a probability mass
P (y = 0) to y = 0 and a density function f+(y) to any y > 0, with:

P (y = 0) +

∫ ∞
0

f+(y)dy = 1. (8)

The probability mass P (y = 0) = 1 − P (y > 0) may be computed by integrating the joint
density function of the latent variables entering the hurdle model over their positive values.

• For trivariate hurdle model 8, using the change of variables:
z1 = y∗1 − β>1 x1

z2 =
y∗2 − β>2 x2

σ

z3 = y∗3 − β>3 x3

(9)

this approach leads to:

P (y = 0) = 1−
∫ ∞
−β>1 x1

∫ ∞
−
β>2 x2
σ

∫ ∞
−β>3 x3

φ(z1, z2, z3; ρ12, ρ13, ρ23)dz1dz2dz3

= 1− Φ(β>1 x1,
β>2 x2

σ
, β>3 x3; ρ12, ρ13, ρ23),

(10)
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where Φ(z1, z2, z3; ρ12, ρ13, ρ23) denotes the distribution function of a standard trivariate
normal distribution with correlation coefficients ρ12, ρ13 and ρ23.

• For trivariate hurdle model 6, using the change of variables:
z1 = y∗1 − β>1 x1

z2 =
ln y∗2 − β>2 x2

σ

z3 = y∗3 − β>3 x3

(11)

this approach leads to:

P (y = 0) = 1−
∫ ∞
−β>1 x1

∫ ∞
−∞

∫ ∞
−β>3 x3

φ(z1, z2, z3; ρ12, ρ13, ρ23)dz1dz2dz3

= 1− Φ(β>1 x1, β
>
3 x3; ρ13),

(12)

where Φ(z1, z2; ρ) denotes the distribution function of a standard bivariate normal dis-
tribution with correlation coefficient ρ.

• The probability mass P (y = 0) for bivariate hurdle models 7 and 5 and univariate
hurdle model 3 can be derived from that of trivariate model 8 by eliminating hurdles 1,
3, 1 and 3, respectively. Likewise, this probability for bivariate hurdle models 4 and 2
can be derived from that of trivariate hurdle model 6 by eliminating hurdles 1 and 3,
respectively. Corresponding formulas of P (y = 0) for all this special cases implemented
in R are presented in Table 1, using the following notations:

Φ1 = Φ(β>1 x1), Φ2 = Φ

(
β>2 x2

σ

)
, Φ3 = Φ(β>3 x3),

Φ12 =

(
β>1 x1,

β>2 x2

σ
; ρ12

)
, Φ23 =

(
β>2 x2

σ
, β>3 x3; ρ23

)
,

where Φ(z) denotes the distribution function of a standard univariate normal distribu-
tion.

The density function f+(y) may be computed by performing: first the change of variables
y∗2 = P (I3 = 1)y = Φ3y on the joint density function of the latent variables entering the
hurdle model; then by integrating this transformed density function over the positive values
of latent variables y∗1 and y∗3.

• For trivariate hurdle model 8 this transformed density function is written as:

Φ3

σ
φ

(
y∗1 − β>1 x1,

Φ3y − β>2 x2

σ
, y∗3 − β>3 x3; ρ12, ρ13, ρ23

)
. (13)

To perform the analytical integration of this function, it is useful to rewrite it as the
product of the marginal distribution of y, namely:

Φ3

σ
φ

(
Φ3y − β>2 x2

σ

)
(14)
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and of the joint density function of y∗1 and y∗3 conditioned with respect to y, which can
be written as follows:

1

σ1|2σ3|2
φ

(
y∗1 − µ1|2

σ1|2
,
y∗3 − µ3|2

σ3|2
; ρ13|2

)
, (15)

with:

µ1|2 = β>1 x1 + ρ12
Φ3y − β>2 x2

σ
, µ3|2 = β>3 x3 + ρ23

Φ3y − β>2 x2

σ
,

σ2
1|2 = 1− ρ2

12, σ2
3|2 = 1− ρ2

23, ρ13|2 =
ρ13 − ρ12ρ23√

1− ρ2
12

√
1− ρ2

23

.

Using this factorization of the density function of y∗1, y and y∗3, we obtain:

f+(y) =
Φ3

σ
φ

(
Φ3y − β>2 x2

σ

)
×
∫ ∞

0

∫ ∞
0

1

σ1|2σ3|2
φ

(
y∗1 − µ1|2

σ1|2
,
y∗3 − µ3|2

σ3|2
; ρ13|2

)
dy∗1dy

∗
3

=
Φ3

σ
φ

(
Φ3y − β>2 x2

σ

)∫ ∞
−
µ1|2
σ1|2

∫ ∞
−
µ3|2
σ3|2

φ(z1, z3; ρ13|2)dz1dz3

=
Φ3

σ
φ

(
Φ3y − β>2 x2

σ

)

× Φ

(
β>1 x1 + ρ12

Φ3y−β>2 x2

σ√
1− ρ2

12

,
β>3 x3 + ρ23

Φ3y−β>2 x2

σ√
1− ρ2

23

; ρ13|2

)
.

(16)

• For trivariate hurdle model 6, we proceed as for hurdle model 8 by substituting the
joint normal density function˜(13), by the following joint normal/log-normal density
function:

1

σy
φ

(
y∗1 − β>1 x1,

ln(Φ3y)− β>2 x2

σ
, y∗3 − β>3 x3; ρ12, ρ13, ρ23

)
. (17)

To integrate this density function with respect to the positive values of y∗1 and y∗2, we
rewrite it as the product of the marginal distribution of y, which is log-normal:

1

σy
φ

(
ln(Φ3y)− β>2 x2

σ

)
(18)

and of the joint density function of y∗1|y and y∗3|y, which is bivariate normal:

1

σ1|2σ3|2
φ

(
y∗1 − µ1|2

σ1|2
,
y∗3 − µ3|2

σ3|2
; ρ13|2

)
, (19)

with:

µ1|2 = β>1 x1 + ρ12
ln(Φ3y)− β>2 x2

σ
, µ3|2 = β>3 x3 + ρ23

ln(Φ3y)− β>2 x2

σ
,
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σ2
1|2 = 1− ρ2

12, σ2
3|2 = 1− ρ2

23, ρ13|2 =
ρ13 − ρ12ρ23√

1− ρ2
12

√
1− ρ2

23

.

By integrating this factorisation of the density function of y∗1, y and y∗3, over the positive
values of y∗1 and y∗3, we obtain:

f+(y) =
φ
(

ln(Φ3y)−β>2 x2

σ

)
σy

∫ ∞
−
µ1|2
σ1|2

∫ ∞
−
µ3|2
σ3|2

φ(z1, z3; ρ13|2)dz1dz3

=
φ
(

ln(Φ3y)−β>2 x2

σ

)
σy

× Φ

(
β>1 x1 + ρ12

ln(Φ3y)−β>2 x2

σ√
1− ρ2

12

,
β>3 x3 + ρ23

ln(Φ3y)−β>2 x2

σ√
1− ρ2

23

; ρ13|2

)
.

(20)

• The density function f+(y) for bivariate hurdle models 7 and 5 and univariate hurdle
model 3 can be derived from that of trivariate model 8 by eliminating hurdles 1, 3, 1
and 3, respectively. Likewise, this density function for bivariate hurdle models 4 and 2
can be derived from that of trivariate hurdle model 6 by eliminating hurdles 1 and 3,
respectively. Corresponding formulas for f+(y) for all this special cases implemented in
R are presented in Table˜1.

From these results it is easy to derive the likelihood function of a random sample of n ob-
servations of the censored dependent variable y. As these observations are all independently
drawn from the same conditional (on covariates x1, x2 and x3) discrete-continuous distribu-
tion, which assigns a conditional probability mass P (y = 0) to the observed value y = 0 and
a conditional density function f+(y) to the observed values y > 0, the log-likelihood function
for an observation yi can be written as :

lnLi =

{
lnP (yi = 0) if yi = 0
ln f+(yi) if yi > 0

(21)

and the log-likelihood for the entire random sample:

lnL =
n∑
i=1

lnLi =
∑
i|yi=0

lnP (yi = 0) +
∑
i|yi>0

ln f+(yi). (22)

3. Model estimation, evaluation and selection

The econometric framework described in the previous section provides a theoretical back-
ground for tackling the problems of model estimation, evaluation and selection within the
statistical theory of classical inference.

3.1. Model estimation

The full parametric specification of our multiple hurdle models allows to efficiently estimate
their parameters by means of the maximum likelihood principle. Indeed, it is well known
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from classical estimation theory that, under the assumption of a correct model specification
and for a likelihood function sufficiently well behaved, the maximum likelihood estimator is
asymptotically efficient within the class of consistent and asymptotically normal estimators
2.

More precisely, the asymptotic distribution of the maximum likelihood estimator θ̂ for the
parameter vector θ of a multiple hurdle model, is written as:

θ̂
A∼ N(θ,

1

n
IA(θ)−1), (23)

where
A∼ stands for “asymptotically distributed as” and

IA(θ) = plim
1

n

n∑
i=1

E

(
∂2 lnLi(θ)

∂θ∂θ>

)
= plim

1

n

n∑
i=1

E

(
∂ lnLi(θ)

∂θ

∂ lnLi(θ)

∂θ>

)
for the asymptotic Fisher information matrix of a sample of n independent observations.

More generally, any inference about a differentiable vector function of θ, denoted by γ = h(θ),
can be based on the asymptotic distribution of its implied maximum likelihood estimator
γ̂ = h(θ̂). This distribution can be derived from the asymptotic distribution of θ̂ according
to the so called delta method:

γ̂
A∼ h(θ) +

∂h

∂θ>
(θ̂ − θ) A∼ N

(
γ,

1

n

∂h

∂θ>
IA(θ)−1∂h

>

∂θ

)
. (24)

The practical use of these asymptotic distributions requires to replace the theoretical variance-
covariance matrix of these asymptotic distributions with consistent estimators, which can be

obtained by using ∂h(θ̂)
∂θ>

as a consistent estimator for ∂h(θ)
∂θ>

and either 1
n

∑n
i=1

∂2 lnLi(θ̂)
∂θ∂θ>

or

1
n

∑n
i=1

∂ lnLi(θ̂)
∂θ

∂ lnLi(θ̂)
∂θ>

as a consistent estimator for IA(θ). The last two estimators are di-
rectly provided by two standard iterative methods used to compute the maximum likelihood
parameter’s estimate, namely the Newton-Raphson method and the Berndt, Hall, Hall, Haus-
man or bhhh method, respectively, mentioned in section 4.3.

3.2. Model evaluation and selection using goodness of fit measures

Two fundamental principles should be used to appraise the results of a model estimation,
namely its economic relevance and its statistical and predictive adequacy. The first principle
deals with the issues of accordance of model estimate with the economic rationale underlying
the model specification and of its relevance for answering the questions for which the model has
been built. These issues are essentially context specific and, therefore, cannot be dealt with
by means of generic criteria. The second principle refers to the issues of empirical soundness
of model estimate and of its ability to predict sample or out-of-sample observations. These
issues can be tackled by means of formal tests of significance, based on the previously presented
asymptotic distributions of model estimates, and by measures of goodness of fit/prediction,
respectively.

2See Amemiya (1985) chapter 4, for a more rigorous statement of this property.
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To assess the goodness of fit of mhurdle estimates, two pseudo R2 coefficients are provided.
The first one is an extension of the classical coefficient of determination, used to explain the
fraction of variation of the dependent variable explained by the covariates included in a linear
regression model with intercept. The second one is an extension of the likelihood ratio index
introduced by˜McFadden (1974) to measure the relative gain in the maximised log-likelihood
function due to the covariates included in a qualitative response model.

To define a pseudo coefficient of determination, we rely on the non linear regression model
explaining the dependent variable of a multiple hurdle model. This model is written as:

y = E(y) + u, (25)

where u stands for a zero expectation, heteroskedastic random disturbance and E(y) for the
expectation of the censored dependent variable y:

E(y) = 0× P (y = 0) +

∫ ∞
0

yf+(y)dy =

∫ ∞
0

yf+(y)dy. (26)

To compute this expectation, we reformulate it as a multiple integral of the joint density
function of y∗1, y and y∗3 multiplied by y, over the positive values of these variables.

• For trivariate hurdle model 8, using the density function ˜(13) and the change of vari-
ables: 

z1 = y∗1 − β>1 x1

z2 =
Φ3y − β>2 x2

σ

z3 = y∗3 − β>3 x3

(27)

this reformulation of E(y) is written as:

E(y) =

∫ ∞
−β>1 x1

∫ ∞
−
β>2 x2
σ

∫ ∞
−β>3 x3

β>2 x2 + σz2

Φ3
φ (z1, z2, z3; ρ12, ρ13, ρ23) dz1dz2dz3

=
β>2 x2

Φ3
Φ

(
β>1 x1,

β>2 x2

σ
, β>3 x3; ρ12, ρ13, ρ23

)
+

σ

Φ3

∫ ∞
−β>1 x1

∫ ∞
−
β>2 x2
σ

∫ ∞
−β>3 x3

z2φ (z1, z2, z3; ρ12, ρ13, ρ23) dz1dz2dz3.

(28)

To perform the analytical integration of the second term of the right-hand side of this
formula, it is useful to rewrite the density function of z1, z2 and z3 as the product of the
marginal density function of z1 and z2, namely φ (z1, z2; ρ13) and of the density function
of z2|z1, z3, which can be written as follows:

φ
(
z2−µ2|1,3
σ2|1,3

)
σ2|1,3

, (29)
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where:

µ2|1,3 = %1z1 + %3z3, σ2
2|1,3 =

1− ρ2
12 − ρ2

13 − ρ2
23 + 2ρ12ρ13ρ23

1− ρ2
13

,

with:

%1 =
ρ12 − ρ13ρ23

1− ρ2
13

, %3 =
ρ23 − ρ12ρ13

1− ρ2
13

.

Using this factorisation of the density function of z1, z2 and z3, we obtain:

∫ ∞
−β>1 x1

∫ ∞
−
β>2 x2
σ

∫ ∞
−β>3 x3

z2φ (z1, z2, z3; ρ12, ρ13, ρ23) dz1dz2dz3

=

∫ ∞
−β>1 x1

∫ ∞
−β>3 x3

[∫ ∞
−
β>2 x2
σ

z2φ

(
z2 − µ2|1,3

σ2|1,3

)
dz2

σ2|1,3

]
φ (z1, z2; ρ13) dz1dz3.

(30)

By performing the change of variable:

z =
z2 − µ2|1,3

σ2|1,3
, (31)

the integral with respect to z2 simplifies to:

µ2|1,3Φ

 β>2 x2

σ + µ2|1,3

σ2|1,3

+ σ2|1,3φ

 β>2 x2

σ + µ2|1,3

σ2|1,3

 . (32)

By inserting this result in formula˜(30), we finally obtain:

E(y) =
β>2 x2

Φ3
Φ

(
β>1 x1,

β>2 x2

σ
, β>3 x3; ρ12, ρ13, ρ23

)
+

σ

Φ3

∫ ∞
−β>1 x1

∫ ∞
−β>3 x3

[
(%1z1 + %3z3) Φ

(
β>2 x2

σ + %1z1 + %3z3

σ2|1,3

)

+ σ2|1,3φ

(
β>2 x2
σ

+%1z1+%3z3
σ2|1,3

)]
φ (z1, z3; ρ13) dz1dz3.

(33)

• For trivariate hurdle model 6, we proceed as for hurdle model 8 by first substituting
the joint normal density function˜(13) by the joint normal/log-normal density func-
tion˜(17), then by performing the change of variables:


z1 = y∗1 − β>1 x1

z2 =
ln (Φ3y)− β>2 x2

σ

z3 = y∗3 − β>3 x3

(34)
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This leads to the following expression of the expected value of y:

E(y) =

∫ ∞
−β>1 x1

∫ ∞
−∞

∫ ∞
−β>3 x3

exp{β>2 x2 + σz2}
Φ3

×φ (z1, z2, z3; ρ12, ρ13, ρ23) dz1dz2dz3 =
exp{β>2 x2}

Φ3

×
∫ ∞
−β>1 x1

∫ ∞
−β>3 x3

[∫ ∞
−∞

exp{σz2}φ
(
z2 − µ2|1,3

σ2|1,3

)
dz2

σ2|1,3

]
φ (z1, z3; ρ13) dz1dz3

(35)

obtained by factorising the density function of z1, z2 and z3 as the product of the
marginal density function of z1 and z3 times the density function of z2|z1, z3.
By performing the change of variable˜(31), the integral with respect to z2 simplifies to:

∫ ∞
−∞

exp{σ(µ2|1,3 + σ2|1,3z)}φ(z)dz = exp

{
σµ2|1,3 +

σ2σ2
2|1,3

2

}
. (36)

By inserting this result in formula˜(35), we finally obtain:

E(y) =

exp

{
β>2 x2 +

σ2σ2
2|1,3
2

}
Φ3

×
∫ ∞
−β>1 x1

∫ ∞
−β>3 x3

exp{σ (%1z1 + %3z3)}φ (z1, z3; ρ13) dz1dz3.

(37)

• E(y) for bivariate hurdle models 7 and 5 and univariate hurdle model 3 can be derived
from that of trivariate model 8 by eliminating hurdles 1, 3, 1 and 3, respectively. Like-
wise, the expectation of y for bivariate hurdle models 4 and 2 can be derived from that
of trivariate hurdle model 6 by eliminating hurdles 1 and 3, respectively. Corresponding
formulas of E(y|y > 0) = E(y)/P (y > 0) for all this special cases implemented in R are
presented in Table˜1, using the following notations:

Ψ2|1 = ρ12φ1Φ

(
β>2 x2

σ − ρ12β
>
1 x1√

1− ρ2
12

)
+ φ2Φ

(
β>1 x1 − ρ12

β>2 x2

σ√
1− ρ2

12

)
,

Ψ2|3 = ρ23φ3Φ

(
β>2 x2

σ − ρ23β
>
3 x3√

1− ρ2
23

)
+ φ2Φ

(
β>3 x3 − ρ23

β>2 x2

σ√
1− ρ2

23

)
,

where φ1 = φ(β>1 x1), φ2

(
β>2 x2

σ

)
and φ3 = φ(β>3 x3).

Note that formulas of E(y|y > 0) for dependent trivariate hurdle models presented in
Table˜1 are obtained by using closed forms of the following integrals :

∫ ∞
−β>x

[
ρzΦ

(
β>2 x2

σ + ρz√
1− ρ2

)
+
√

1− ρ2φ

(
β>2 x2

σ + ρz√
1− ρ2

)]
φ(z)dz
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= ρφ
(
β>x

)
Φ

(
β>2 x2

σ − ρβ>x√
1− ρ2

)
+ φ

(
β>2 x2

σ

)
Φ

(
β>x− ρβ

>
2 x2

σ√
1− ρ2

)
,

∫ ∞
−β>x

exp {σρz}φ(z)dz = exp

{
σ2ρ2

2

}
Φ
(
β>x+ σρ

)
.

Denoting by ŷi the fitted values of yi obtained by estimating the mean square error predictor
E(yi) for yi with the maximum likelihood estimate of model parameters, we define a pseudo
coefficient of determination for a multiple hurdle model using the following formula:

R2 = 1− RSS

TSS
, (38)

with RSS =
∑

(yi − ŷi)2 the residual sum of squares and TSS =
∑

(yi − ŷ0)2 the total sum
of squares, where ŷ0 denotes the maximum likelihood estimate of E(yi) in the multiple hurdle
model without covariates (intercept-only model 3). Note that this goodness of fit measure
cannot exceed one but can be negative, as a consequence of the non linearity of E(yi) with
respect to the parameters.

The extension of the McFadden likelihood ratio index for qualitative response models to
multiple hurdle models is straightforwardly obtained by substituting in this index formula:

ρ2 = 1− lnL(θ̂)

lnL(α̂)
=

lnL(α̂)− lnL(θ̂)

lnL(α̂)
, (39)

the maximised log-likelihood function of a qualitative response model with covariates and
the log-likelihood function of the corresponding model without covariates or intercept-only
model, with the maximised log-likelihood functions of a multiple hurdle model with covariates,
lnL(θ̂), and without covariates, lnL(α̂), respectively. This goodness of fit measure takes
values within zero and one and, as it can be easily inferred from the above second expression
of ρ2, it measures the relative increase of the maximised log-likelihood function due to the
use of explanatory variables with respect to the maximised log-likelihood function of a naive
intercept-only model.

Model selection deals with the problem of discriminating between alternative model specifi-
cations used to explain the same dependent variable, with the purpose of finding the one best
suited to explain the sample of observations at hand. This decision problem can be tackled
from the point of view of the model specification achieving the best in-sample fit.

This selection criterion is easy to apply as it consists in comparing one of the above defined
measures of fit, computed for the competing model specifications, after adjusting them for the
loss of sample degrees of freedom due to model parametrisation. Indeed, the value of these
measures of fit can be improved by increasing model parametrisation, in particular when the
parameter estimates are obtained by optimising a criteria functionally related to the selected
measure of fit, as is the case when using the ρ2 fit measure with a maximum likelihood
estimate. Consequently, a penalty that increases with the number of model parameters should

3For multiple hurdle models involving many intercepts, the estimation of a specification without covariates
may face serious numerical problems. If the mhurdle software fails to provide such an estimate, the total sum
of squares TSS is computed by substituting the sample average of y for ŷ0.
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be added to the R2 and ρ2 fit measures to trade off goodness of fit improvements with
parameter parsimony losses.

To define an adjusted pseudo coefficient of determination, we rely on Theil (1971)’s correction
of R2 in a linear regression model, defined by

R̄2 = 1− n−K0

n−K
RSS

TSS
, (40)

where K and K0 stand for the number of parameters of the multiple hurdle model with
covariates and without covariates, respectively 4. Therefore, choosing the model specification
with the largest R̄2 is equivalent to choosing the model specification with the smallest model
residual variance estimate: s2 = RSS

n−K .

To define an adjusted likelihood ratio index, we replace in this goodness of fit measure ρ2

the log-likelihood criterion with the Akaike information criterion AIC = −2 lnL(θ̂) + 2K.
Therefore, choosing the model specification with the largest

ρ̄2 = 1− lnL(θ̂)−K
lnL(α̂)−K0

(41)

is equivalent to choosing the model specification that minimises the Akaike (1973) predictor
of the Kullback-Leibler Information Criterion (KLIC). This criterion measures the distance
between the conditional density function f(y|x; θ) of a possibly misspecified parametric model
and that of the true unknown model, denoted by h(y|x). It is defined by the following formula:

KLIC = E

[
ln

(
h(y|x)

f(y|x; θ∗)

)]
=

∫
ln

(
h(y|x)

f(y|x; θ∗)

)
dH(y, x), (42)

where H(y, x) denotes the distribution function of the true joint distribution of (y, x) and θ∗
the probability limit, with respect to H(y, x), of θ̂ the so called quasi-maximum likelihood
estimator obtained by applying the maximum likelihood when f(y|x; θ) is misspecified.

3.3. Model selection using Vuong tests

Model selection can also be tackled from the point of view of the model specification that is
favoured in a formal test comparing two model alternatives.

This second model selection criterion relies on the use of a test proposed by Vuong (1989).
According to the rationale of this test, the ”best” parametric model specification among a
collection of competing specifications is the one that minimises the KLIC criterion or, equiv-
alently, the specification for which the quantity:

E[ln f(y|x; θ∗)] =

∫
ln f(y|x; θ∗)dH(y, x) (43)

is the largest. Therefore, given two competing conditional models with density functions
f(y|x; θ) and g(y|x;π) and parameter vectors θ and π of size K and L, respectively, Vuong
suggests to discriminate between these models by testing the null hypothesis:

4When the mhurdle software fails to provide the parameter estimates of the intercept-only model and the
total sum of squares TSS is computed by substituting the sample average of y for ŷ0, K0 is set equal to 1.
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H0 : E[ln f(y|x; θ∗)] = E[ln g(y|x;π∗)]⇐⇒ E

[
ln
f(y|x; θ∗)

g(y|x;π∗)

]
= 0,

meaning that the two models are equivalent, against:

Hf : E[ln f(y|x; θ∗)] > E[ln g(y|x;π∗)]⇐⇒ E

[
ln
f(y|x; θ∗)

g(y|x;π∗)

]
> 0,

meaning that specification f(y|x; θ) is better than g(y|x;π), or against:

Hg : E[ln f(y|x; θ∗)] < E[ln g(y|x;π∗)]⇐⇒ E

[
ln
f(y|x; θ∗)

g(y|x;π∗)

]
< 0,

meaning that specification g(y|x;π) is better than f(y|x; θ).

The quantity E[ln f(y|x; θ∗)] is unknown but it can be consistently estimated, under some reg-
ularity conditions, by 1/n times the log-likelihood evaluated at the quasi-maximum likelihood
estimator. Hence 1/n times the log-likelihood ratio (LR) statistic

LR(θ̂, π̂) =
n∑
i=1

ln
f(yi|xi; θ̂)
g(yi|xi; π̂)

(44)

is a consistent estimator of E
[
ln f(y|x;θ∗)

g(y|x;π∗)

]
. Therefore, an obvious test of H0 consists in

verifying whether the LR statistic differs from zero. The distribution of this statistic can be
worked out even when the true model is unknown, as the quasi-maximum likelihood estimators
θ̂ and π̂ converge in probability to the pseudo-true values θ∗ and π∗, respectively, and have
asymptotic normal distributions centred on these pseudo-true values.

The resulting distribution of LR(θ̂, π̂) depends on the relation linking the two competing mod-
els. To this purpose, Vuong differentiates among three types of competing models, namely:
nested, strictly non nested and overlapping.

A parametric model Gπ defined by the conditional density function g(y|x;π) is said to be
nested in parametric model Fθ with conditional density function f(y|x; θ), if and only if any
conditional density function of Gπ is equal to a conditional density function of Fθ almost
everywhere (disregarding any zero probability sub-set of (y, x) values, with respect to the
true distribution function H(y, x)). This means that we can write a parametric constraint in
the form θ = T (π), allowing to express model Gπ as a particular case of model Fθ. Within
our multiple hurdle special models this is the case when comparing two specifications differing
only with respect to the presence or the absence of correlated disturbances. For these models,
it is necessarily the case that f(y|x; θ∗) ≡ g(y|x;π∗). Therefore H0 is tested against Hf .

If model Fθ is misspecified, it has been shown by Vuong that:

• under H0, the quantity 2LR(θ̂, π̂) converges in distribution towards a weighted sum of
K + L iid χ2(1) random variables, where the weights are the K + L almost surely real
and non negative eigenvalues of the following (K + L)× (K + L) matrix:

W =

[
−BfA−1

f −BfgA−1
g

B>fgA
−1
f BgA

−1
g

]
,
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where

Af = E

(
∂2 ln f(y|x; θ∗)

∂θ∂θ>

)
, Ag = E

(
∂2 ln g(y|x;π∗)

∂π∂π>

)
,

Bf = E

(
∂ ln f(y|x; θ∗)

∂θ

∂ ln f(y|x; θ∗)

∂θ>

)
, Bg = E

(
∂ ln g(y|x;π∗)

∂π

∂ ln g(y|x;π∗)

∂π>

)
,

Bfg = E

(
∂ ln f(y|x; θ∗)

∂θ

∂ ln g(y|x;π∗)

∂π>

)
.

To simplify the computation of this limiting distribution, one can alternatively use the
weighted sum of K iid χ2(1) random variables, where the weights are the K almost
surely real and non negative eigenvalues of the following smaller K ×K matrix:

W = Bf

[
DA−1

g D> −A−1
f

]
,

where D = ∂T (π∗)
∂π>

.

• under Hf , the same statistic converge almost surely towards +∞.

Performing this standard LR test for nested models, requires to replace the theoretical ma-
trices W and W by a consistent estimator. Such an estimator is obtained by substituting
matrices Af , Ag, Bf , Bg and Bfg for their sample analogue:

Âf =
1

n

n∑
i=1

∂2 ln f(yi|xi; θ̂)
∂θ∂θ>

, Âg =
1

n

n∑
i=1

∂2 ln g(yi|xi; π̂)

∂π∂π>
,

B̂f =
1

n

n∑
i=1

∂ ln f(yi|xi; θ̂)
∂θ

∂ ln f(yi|xi; θ̂)
∂θ>

, B̂g =
1

n

n∑
i=1

∂ ln g(yi|xi; θ̂)
∂θ

∂ ln g(yi|xi; θ̂)
∂θ>

,

B̂fg =
1

n

n∑
i=1

∂ ln f(yi|xi; θ̂)
∂θ

∂ ln g(yi|xi; θ̂)
∂θ>

and D for D̂ = ∂T (π̂)/∂π>.

The density function of this asymptotic test statistic has not been worked out analytically.
Therefore, we compute it by simulation.

Hence, for a test with critical value c, H0 is rejected in favour of Hf if 2LR(θ̂, π̂) > c or if the

p-value associated to the observed value of 2LR(θ̂, π̂) is less than the significance level of the
test.

Note that, if model Fθ is correctly specified, the asymptotic distribution of the LR statistic
is, as expected, a χ2 random variable with K − L degrees of freedom.

Two parametric models Fθ and Gπ defined by conditional distribution functions f(y|x; θ)
and g(y|x;π) are said to be strictly non-nested, if and only if no conditional distribution
function of model Fθ is equal to a conditional distribution function of Gπ almost everywhere,
and conversely. Within multiple hurdle special models this is the case when comparing two
specifications differing with respect either to the censoring mechanisms in effect or to the
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functional form of the desired consumption equation. For these models, it is necessarily the
case that f(y|x; θ∗) 6= g(y|x;π∗) implying that both models are misspecified under H0.

For such strictly non-nested models, Vuong has shown that:

• under H0, the quantity n−1/2LR(θ̂, π̂) converges in distribution towards a normal ran-
dom variable with zero expectation and variance:

ω2 = V

(
ln
f(y|x; θ∗)

g(y|x;π∗)

)
computed with respect to the distribution function of the true joint distribution of (y, x).

• under Hf , the same statistic converge almost surely towards +∞.

• under Hg, the same statistic converge almost surely towards −∞.

Hence, H0 is tested against Hf or Hg using the standardised LR statistic:

TLR =
LR(θ̂, π̂)√

nω̂
, (45)

where ω̂2 denotes the following strongly consistent estimator for ω2:

ω̂2 =
1

n

n∑
i=1

(
ln
f(yi|xi; θ̂)
g(yi|xi; π̂)

)2

−

(
1

n

n∑
i=1

ln
f(yi|xi; θ̂)
g(yi|xi; π̂)

)2

.

As a consequence, for a test with critical value c, H0 is rejected in favour of Hf if TLR > c
or if the p-value associated to the observed value of TLR in less than the significance level of
the test. Conversely, H0 is rejected in favour of Hg if TLR < −c or if the p-value associated
to the observed value of |TLR| in less than the significance level of the test.

Note that, if one of models Fθ or Gπ is assumed to be correctly specified, the Cox (1961,
1962) LR test of non nested models needs to be used. Because this test is computationally
awkward to implement and not really one of model selection, as it can lead to reject both
competing models, it has not been programmed in mhurdle.

Two parametric models Fθ and Gπ defined by conditional distribution functions f(y|x; θ) and
g(y|x;π) are said to be overlapping, if and only if part of the conditional distribution function
of model Fθ is equal to the conditional distribution function of Gπ but none of these models
is nested in the other. Within multiple hurdle special models this is the case when comparing
two specifications differing only with respect to the covariates taken into consideration, some
of them being common to both models and others specific. For these models it is not clear
a priori as to whether or not f(y|x; θ∗) = g(y|x;π∗) almost everywhere, except if we know a
priori that at least one of the two competing models is correctly specified. As a consequence,
the form of the asymptotic distribution of LR(θ̂, π̂) under H0 is unknown, which prevents
from performing a model selection test based on this statistic.

In the general case where both competing models are wrongly specified, Vuong suggests a
sequential procedure which consists in testing first whether or not the variance ω2 equals zero
(since f(y|x; θ∗) = g(y|x;π∗) almost everywhere if and only if ω2 = 0) and then, according to
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the outcome of this test, in using the appropriate asymptotic LR(θ̂, π̂) distribution to perform
the model selection test.

To test Hω
0 : ω2 = 0 against Hω

A : ω2 6= 0, Vuong suggests to use, as a test statistic, the above
defined strongly consistent estimator for ω2, ω̂2, and proves that:

• under Hω
0 , the quantity nω̂2 converges in distribution towards the same limiting dis-

tribution like that of statistic 2LR(θ̂, π̂) when used for discriminating two misspecified
nested models.

• under Hω
A, the same statistic converge almost surely towards +∞.

Therefore, performing this variance test requires to compute the eigenvalues of a consistent
estimate of matrix W or W , and derive by simulation the density function of the corresponding
weighted sum of iid χ2(1) random variables.

Hence, for a test with critical value c, Hω
0 is rejected in favour of Hω

A if nω̂2 > c or if the
p-value associated to the observed value of nω̂2 is less than the significance level of the test.

Note, that an asymptotically equivalent test is obtained by replacing in statistics nω̂2, ω̂2 by:

ω̃2 =
1

n

n∑
i=1

(
ln
f(yi|xi; θ̂)
g(yi|xi; π̂)

)2

.

The second step in discriminating two overlapping models depends on the outcome of the
variance test.

• If Hω
0 is not rejected, one should conclude that the two models cannot be discriminated

given the data, since assuming ω2 = 0 implies that H0 means that the two models are
equivalent.

• If Hω
0 is rejected, the test of H0 against Hf or Hg must be carried out using the

standardised LR statistic TLR, as for discriminating between two strictly non-nested
models. Indeed, H0 is still possible when ω2 6= 0. Note, that this sequential procedure
of testing H0 against Hf or Hg has a significance level bounded above by the maximum
of the significance levels used for performing the variance and the standardised LR tests.

Finally, if one of the two competing models is supposed to be correctly specified, then the two
models are equivalent if and only if the other model is correctly specified and if and only if
the conditional density functions of the two models are identical almost everywhere. In this
case we can bypass the variance test and directly construct a model selection test based on
the 2LR(θ̂, π̂) test statistic used for discriminating between two nested models.

4. Software rationale

There are three important issues to be addressed to correctly implement in R the modelling
strategy described in the previous sections. The first one is to provide a good interface
to describe the model to be estimated. The second one is to find good starting values for
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computing model estimates. The third one is to have flexible optimisation tools for likelihood
maximisation.

4.1. Model syntax

In R, the model to be estimated is usually described using formula objects, the left-hand side
denoting the censored dependent variable y and the right-hand side the functional relation
explaining y as a function of covariates. For example, y ~ x1 + x2 * x3 indicates that y

linearly depends on variables x1, x2, x3 and on the interaction term x2 times x3.

For the models implemented in mhurdle, three kinds of covariates should be specified: those of
the good selection equation (hurdle 1) denoted x1, those of the desired consumption equation
(hurdle 2), denoted x2, and those of the purchasing equation (hurdle 3), denoted x3.

To define a model with three kinds of covariates, a general solution is given by the Formula
package developed by Zeileis and Croissant (2010), which provides extended formula objects.
To define a model where y is the censored dependent variable, x11 and x12 two covariates for
the good selection equation, x21 and x22 two covariates for the desired consumption equation,
and x31 and x32 two covariates for the purchasing equation, we use the following commands
:

R> library("Formula")

R> f <- Formula(y ~ x11 + x12 | x21 + x22 | x31 + x32)

4.2. Starting values

For the models we consider, the log-likelihood function will be, in general, not concave. More-
over, this kind of models are highly non linear with respect to parameters, and therefore
difficult to estimate. For these reasons, the question of finding good starting values for the
iterative computation of parameter estimates is crucial.

As a less computer intensive alternative to maximum likelihood estimation, Heckman (1976)
has suggested a two step estimation procedure based on a respecification of the censored
variable linear regression model, sometimes called “Heckit” model, avoiding inconsistency of
the ordinary least-squares estimator. This two step estimator is consistent but inefficient. It
is implemented in package sampleSelection (Toomet and Henningsen 2008b).

According to˜Carlevaro, Croissant, and Hoareau (2008) experience in applying this estimation
procedure to double hurdle models, this approach doesn’t seem to work well with correlated
hurdle models. Indeed, except for the very special case of models 2, 3 and 4, the probability
of observing a censored purchase is not that of a simple probit model (see Table 1).

As noted previously, for uncorrelated single hurdle models, the estimation may be performed
in a sequence of two simple estimations, namely the maximum likelihood estimation of a
standard dichotomous probit model, followed by the ordinary least-squares estimation of a
linear, log-linear or linear-truncated regression model. In the last case, package truncreg
(Croissant 2009) is used.

For correlated single hurdle 1 model 2, the maximum likelihood estimate of the parameters
of the corresponding uncorrelated model (ρ12 = 0) is used as starting values.
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For P-Tobit models (4 and 7), the starting values are computed using an Heckman-like two
step procedure. In the first step, parameters β3 are estimated using a simple probit. In
the second step, a linear regression model is estimated by ordinary least squares using the
sub-sample of uncensored observations and yiΦ(β̂>3 x3i) or ln yi + ln Φ(β̂>3 x3i) (in the case of
a log-normal specification) as dependent variable.

For Tobit model (3), the least squares estimate of the linear regression model is used as
starting values.

For double hurdle model (5), the starting values for β1 are obtained by estimating a probit
model and those for β2 using a least squares estimate with the truncated sample of a linear
regression model assuming ρ12 = 0.

Finally, for models involving hurdles 1 and 3 (models 6 and 8), we use two probit models to get
starting values for β1 and β2. Then, we estimate a linear regression model by ordinary least
squares with the sub-sample of uncensored observations using yiΦ(β̂>3 x3i) or ln yi+ln Φ(β̂>3 x3i)
(in the case of a log-normal specification) as dependent variable and assuming no correlation
between the desired consumption equation and these two hurdles.

4.3. Optimisation

Two kinds of algorithms are currently used for maximum likelihood estimation. The first kind
of algorithms can be called “Newton-like” methods. With these algorithms, at each iteration,
the hessian matrix of the log-likelihood is computed, using either the second derivatives of
the log-likelihood (Newton-Raphson method) or the outer product of the gradient (Berndt,
Hall, Hall, Hausman or bhhh method). This approach is very powerful if the log-likelihood
is well-behaved, but it may perform poorly otherwise and fail after a few iterations.

The second algorithm, called Broyden, Fletcher, Goldfarb, Shanno or bfgs method, updates
at each iteration an estimate of the hessian matrix of the log-likelihood. It is often more
robust and may perform better in cases where the formers don’t work.

Two optimisation functions are included in core R: nlm, which uses the Newton-Raphson
method, and optim , which uses the bfgs method (among others). The recently developed
maxLik package by Toomet and Henningsen (2008a) provides a unified framework. With a
unique interface, all the previously described methods are available.

The behaviour of maxLik can be controlled by the user using mhurdle arguments like print.level
(from 0-silent to 2-verbal), iterlim (the maximum number of iterations), methods (the
method used, one of "nr", "bhhh" or "bfgs") that are passed to maxLik.

Some models require the computation of the bivariate normal cumulative density function.
We use the pbivnorm package (Kenkel 2011) which provides a vectorised (and therefore fast
convenient) function to compute the bivariate normal cdf.

5. Examples

The package is loaded using:

R> library("mhurdle")

To illustrate the use of mhurdle, we use the Comics data frame which contains data about
the readings of comics. It is part of a survey conducted by the insee (the French national
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statistical institute) in 2003 about cultural and sportive practises5. The explained variable is
the number of comics read during the last 12 months by one (randomly chosen) member of
the household. There are 5159 observations.

We emphasise that the observed censored variable to be explained is not an expenditure but
a service derived from the use of a durable good, namely the comic book library to which the
comic book reader has access. Therefore, hurdles 2 and 3 of our modelling paradigm must be
reinterpreted as mechanisms describing the process of building up the comic book library and
that of planning the intensity of use of the library, respectively. Note also that mhurdle treats
the dependent variable as a continuous quantitative variable, while it is in fact a discrete
count variable. However, the high number of readings during a year by a comic book reader
fully justifies this numerical approximation.

R> data("Comics", package = "mhurdle")

R> head(Comics, 3)

comics area income cu size age nationality empl gender couple educ

1 0 paris 80.0 2 2 75 natfr retired male yes 18

2 0 paris 41.5 1 1 77 natfr retired female no 18

3 0 paris 80.0 2 2 43 natfr interm female no 22

R> mean(Comics$comics == 0)

[1] 0.7828705

R> max(Comics$comics)

[1] 520

The number of comics read is zero for about 78% of the sample and the maximum value is
520. The covariates of this data frame are :

area: one of rural, small, medium, large and paris

income: the income of the household (in thousands of euros per month),

cu: the number of consumption units (one for the first two adults, one half for other members
of the household),

size : the number of persons in the household,

age : the age of the person,

empl : the kind of occupation, a qualitative factor with 9 levels,

gender: one of male and female,

5The data is available at http://insee.fr/fr/themes/detail.asp?reg_id=0&ref_id=fd-parcul03. Main
results are presented in Muller (2005).

http://insee.fr/fr/themes/detail.asp?reg_id=0&ref_id=fd-parcul03
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couple, ”does the person live in couple ?”, a qualitative factor with levels yes and no,

educ : the number of years of education.

5.1. Estimation

The estimation is performed using the mhurdle function, which has the following arguments:

formula: a formula describing the model to estimate. It should have three parts on the
right-hand side specifying, in the first part, the good selection equation covariates, in
the second part, the desired consumption equation covariates and, in the third part, the
purchasing equation covariates.

data: a data frame containing the observations of the variables present in the formula.

subset, weights, na.action: these are arguments passed on to the model.frame function in
order to extract the data suitable for the model. These arguments are present in the lm

function and in most of the estimation functions.

start: the starting values. If NULL, the starting values are computed as described in section
4.2.

dist: this argument indicates the functional form of the desired consumption equation, which
may be either log-normal "l" (the default), normal "n" or truncated normal "t".

corr: this argument indicates whether the disturbance of the good selection equation (hurdle
1) or that of the purchasing equation (hurdle 3) is correlated with that of the desired
consumption equation. This argument is in this case respectively equal to "h1" or "h3",
or NULL (the default) in case of no correlation,

... further arguments that are passed to the optimisation function maxLik.

Different combinations of these arguments lead to a large variety of models. Note that some
of them are logically inconsistent and therefore irrelevant. For example, a model with no good
selection equation and corr = "h1" is logically inconsistent.

To illustrate the use of mhurdle package, we first estimate a simple Tobit model, which we
call model3 ; the income is first divided by the number of consumption units and then by its
sample mean. Powers up to three for the log of income are introduced.

R> Comics$incu <- with(Comics, income / cu)

R> Comics$incum <- with(Comics, incu / mean(incu))

R> model3 <- mhurdle(comics ~ 0 | log(incum) + I(log(incum)^2) +

+ I(log(incum)^3) + age + gender + educ +

+ size| 0, Comics, dist = "n", method = 'bfgs')

Note that the first and the third part of the formula are 0, as there is no good selection and
no purchasing equations.
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Consider now that some covariates explain the fact that the good is selected, and not the level
of consumption if the good is chosen. In this case, we estimate the following dependent double
hurdle model, which we call model5d. We keep the income and the size of the household as
covariates for the desired consumption equation and move the other covariates to the first
part of the formula.

R> model5d <- mhurdle(comics ~ gender + educ + age | log(incum) +

+ I(log(incum)^2) + I(log(incum)^3) + size | 0,

+ Comics, corr = "h1", dist = "n", method = 'bfgs')

The same model without correlation is called model5i, and can easily be obtained by updating
model5d :

R> model5i <- update(model5d, corr = NULL)

If one wants that zeros only arise from the selection mechanism, one has to switch the dist

argument to "l", so that a log-normal distribution is introduced. This can be done easily by
updating the previous model and this leads to a model called model2d :

R> model2d <- update(model5d, dist = "l")

The independent version is then easily obtained :

R> model2i <- update(model2d, corr = NULL)

The last model we estimate is a dependent triple hurdle model ; compared to the double hurdle
model previously estimated, we move the age covariate from the selection to the purchasing
equation :

R> model8d1 <- mhurdle(comics ~ gender + educ | log(incum) +

+ I(log(incum)^2) + I(log(incum)^3) + size | age,

+ Comics, corr = "h1", dist = "n", method = 'bfgs')

5.2. Methods

A summary method is provided for mhurdle objects :

R> summary(model8d1)

Call:

mhurdle(formula = comics ~ gender + educ | log(incum) + I(log(incum)^2) +

I(log(incum)^3) + size | age, data = Comics, dist = "n",

corr = "h1", method = "bfgs")

Frequency of 0: 0.78287
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BFGS maximisation method

117 iterations, 0h:0m:16s

g'(-H)^-1g = 4.48E-05

Coefficients :

Estimate Std. Error t-value Pr(>|t|)

h1.(Intercept) -1.755587 0.229643 -7.6448 2.087e-14 ***

h1.genderfemale -0.547607 0.130040 -4.2110 2.542e-05 ***

h1.educ 0.188445 0.014850 12.6895 < 2.2e-16 ***

h2.(Intercept) -40.533234 3.486387 -11.6261 < 2.2e-16 ***

h2.log(incum) 14.633088 2.899293 5.0471 4.485e-07 ***

h2.I(log(incum)^2) -3.777712 2.648900 -1.4261 0.153827

h2.I(log(incum)^3) -4.457532 1.702043 -2.6189 0.008821 **

h2.size 5.253440 0.952563 5.5151 3.487e-08 ***

h3.(Intercept) 11.318180 2.048501 5.5251 3.293e-08 ***

h3.age -0.149555 0.026846 -5.5709 2.534e-08 ***

sigma 55.212046 1.340301 41.1938 < 2.2e-16 ***

rho -0.283790 0.048716 -5.8254 5.697e-09 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log-Likelihood: -7322.1 on 12 Df

R^2 :

Coefficient of determination : 0.0048516

Likelihood ratio index : 0.032983

This method displays the percentage of 0 in the sample, the table of parameter estimates,
and two measures of goodness of fit.

coef, vcov, logLik, fitted and predict methods are provided in order to extract part of
the results.

Parameter estimates and the estimated asymptotic variance matrix of maximum likelihood
estimators are extracted using the usual coef and vcov functions. mhurdle object methods
have a second argument indicating which subset has to be returned (the default is to return
all).

R> coef(model8d1, "h2")

(Intercept) log(incum) I(log(incum)^2) I(log(incum)^3) size

-40.533234 14.633088 -3.777712 -4.457532 5.253440

R> coef(model5d, "h1")

(Intercept) genderfemale educ age

2.34059781 -0.56070370 0.10210778 -0.05598002
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R> coef(model5d, "sigma")

sigma

55.48789

R> coef(summary(model8d1), "h3")

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 11.318180 2.04850079 5.525104 3.292906e-08

age -0.149555 0.02684567 -5.570915 2.534052e-08

R> vcov(model8d1, "h3")

(Intercept) age

(Intercept) 4.19635548 -0.0547905633

age -0.05479052 0.0007206902

Log-likelihood may be obtained for the estimated model or for a “naive” model, defined as a
model without covariates :

R> logLik(model5d)

[1] -7274.991

R> logLik(model5d, naive = TRUE)

[1] -7571.842

Fitted values are obtained using the fitted method. The output is a matrix whose two
columns are the estimated probability of censoring P(y = 0) and the estimated expected
value of an uncensored dependent variable observation E(y|y > 0).

R> head(fitted(model5d))

P(y=0) E(y|y>0)

[1,] 0.8655939 32.94001

[2,] 0.9492517 30.09306

[3,] 0.6639017 37.10684

[4,] 0.9796777 26.43918

[5,] 0.8614599 33.03126

[6,] 0.6387773 37.83426

A predict function is also provided, which returns the same two columns for given values of
the covariates.
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R> predict(model5d,

+ newdata = data.frame(

+ comics = c(0, 1, 2),

+ gender = c("female", "female", "male"),

+ age = c(20, 18, 32),

+ educ = c(10, 20, 5),

+ incum = c(4, 8, 2),

+ size = c(2, 1, 3)))

P(y=0) E(y|y>0)

[1,] 0.6729281 36.35521

[2,] 0.8357142 29.38384

[3,] 0.7754750 35.26525

For model evaluation and selection purposes, goodness of fit measures and Vuong tests de-
scribed in section 3 are provided. These criteria allow to select the most empirically relevant
model specification.

Two goodness of fit measures are provided. The first measure is an extension to limited
dependent variable models of the classical coefficient of determination for linear regression
models. This pseudo coefficient of determination is computed both without (see formula˜(38))
and with (see formula˜(40)) adjustment for the loss of sample degrees of freedom due to model
parametrisation. The unadjusted coefficient of determination allows to compare the goodness
of fit of model specifications having the same number of parameters, whereas the adjusted
version of this coefficient is suited for comparing model specifications with a different number
of parameters.

R> rsq(model5d, type = "coefdet")

[1] 0.01210285

The second measure is an extension to limited dependent variable models of the likelihood
ratio index for qualitative response models. This pseudo coefficient of determination is also
computed both without (see formula˜(39)) and with (see formula˜(41)) adjustment for the
loss of sample degrees of freedom due to model parametrisation, in order to allow model
comparisons with the same or with a different number of parameters.

R> rsq(model5d, type = "lratio", adj = TRUE)

[1] 0.03825995

The Vuong test based on the TLR statistic, as presented in section 3.3 (see formula˜(45)),
is also provided as a criteria for model selection within the family of 8 strictly non-nested
models of Figure 1.

R> vuongtest(model5d, model8d1)
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Vuong Test (non-nested)

data: model5d model8d1

z = 4.7179, p-value = 1.191e-06

According to this outcome, the null hypothesis stating the equivalence between the two models
is strongly rejected in favour of the alternative hypothesis stating that model5d is better than
model8d1.

Note that Vuong tests for strictly non-nested mhurdle models can also be performed using
the vuong() function of the pscl package of Jackman (2011) .

Testing the hypothesis of no correlation between the good selection mechanism and the desired
consumption equation can be performed as a Vuong test of selection between two nested
models, differing only with respect to the value of the correlation coefficient ρ12, namely the
test of the hypothesis H0 : ρ12 = 0, specifying an independent mhurdle model, against the
alternative hypothesis Ha : ρ12 6= 0, specifying a corresponding dependent mhurdle model.
This test is performed using the log-likelihood ratio (LR) statistic˜(44). As explained in
section 3.3, the critical value or the p-value to be used to perform this test is not the same
depending on the model builder believes or not that his unrestricted model, assuming −1 <
ρ12 < 1, is correctly specified. In the first case, the p-value is computed using the standard
chi square distribution, whereas in the second case a weighted chi square distribution is used.

R> vuongtest(model2d, model2i, type = 'nested', hyp = TRUE)

Vuong Test (nested)

data: model2d model2i

chisq = 3.5204, df = 1, p-value = 0.06062

R> vuongtest(model2d, model2i, type = 'nested', hyp = FALSE)

Vuong Test (nested)

data: model2d model2i

wchisq = 3.5204, df = 0.919, p-value = 0.066

According to these outcomes, the null hypothesis of zero correlation is accepted or rejected
at almost the same significance level, which must be set higher than 0.066 for acceptance and
lower than 0.061 for rejection.

Testing this hypothesis of no correlation by assuming the unrestricted model correctly spec-
ified, can be also performed by means of the classical Wald test, using the t-statistic or the
p-value of the correlation coefficient estimate presented in the table of parameter estimates
of the dependent model (model2d).

R> coef(summary(model2d), "rho")

Estimate Std. Error t-value Pr(>|t|)

rho -0.1513119 0.07783631 -1.943975 0.05189841



32 Multiple Hurdle Models in R: The mhurdle Package

According to this test outcome, the hypothesis of zero correlation is accepted at a little less
stringent significance level than with a Vuong test.

Finally, to illustrate the use of the Vuong test for discriminating between two overlapping
models, we consider a slightly different Tobit model obtained by removing the age covariate
and adding the empl and area covariates :

R> model3bis <- mhurdle(comics ~ 0 | log(incum) + I(log(incum)^2) +

+ I(log(incum)^3) + gender + educ + age +

+ empl+area| 0, Comics, dist = "n", method = 'bfgs')

In this case, the Vuong test is performed in two steps. Firstly a test of the null hypothesis
ω2 = 0, meaning that the two models are equivalent, is undertaken.

R> vuongtest(model3, model3bis, type="overlapping")

Vuong Test (overlapping)

data: model3 model3bis

wchisq = 41.3014, df = 12.54, p-value = 0.001

This null hypothesis is here strongly rejected. Therefore, we can test the equivalence of these
two models as if they were strictly non-nested.

R> vuongtest(model3, model3bis, type="non-nested")

Vuong Test (non-nested)

data: model3 model3bis

z = -0.7078, p-value = 0.2395

According to the outcome of this second test, we conclude that these two model specifications
cannot be empirically discriminated.

If one of two overlapping models is assumed to be correctly specified, we can bypass the first
step of this Voung test (the variance test) and proceed as if we had to discriminate between
two nested models.

R> vuongtest(model3bis, model3, type="overlapping", hyp=TRUE)

Vuong Test (overlapping)

data: model3bis model3

wchisq = 9.0973, df = 10.101, p-value = 0.992

Once again, the equivalence of the two models is not rejected.
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6. Conclusion

mhurdle aims at providing a unified framework allowing to estimate and assess a variety
of extensions of the standard Tobit model particularly suitable for single-equation demand
analysis not currently implemented in R. It explains the presence of a large proportion of
zero observations for a dependent variable by means of up to three censoring mechanisms,
called hurdles. Inspired by the paradigms used for analysing censored household expenditure
data, these hurdles express: (i) a non economic decision mechanism for a good rejection or
selection motivated by ethical, psychological or social considerations; (ii) an economic decision
mechanism for the desired level of consumption of a previously selected good, which can turn
out to be negative leading to a nil consumption; (iii) an economic or non economic decision
mechanism for the time frequency at which the desired quantity of a selected good is bought
or consumed. Interdependence between these censoring mechanisms is modelled by assuming
a possible correlation between the random disturbances in the model relations. Despite the
particular area of application from which the above mentioned censoring mechanisms stem,
the practical scope of mhurdle models doesn’t seem to be restricted to empirical demand
analysis.

To provide an operational and efficient statistical framework, mhurdle models are specified
in a fully parametric form allowing statistical estimation and testing within the maximum
likelihood inferential framework. Tools for model evaluation and selection are provided, based
on the use of goodness of fit measure extensions of the classical coefficient of determination
and of the likelihood ratio index of McFadden, as well as on the use of Vuong tests for
nested, strictly non-nested and overlapping model comparison when none, one or both of two
competing models are misspecified.

Tests of mhurdle computing procedures with a wide variety of simulated and observational
data have proved the performance and robustness of mhurdle package. Still, extensions and
improvements of the software are under way, notably the estimation of trivariate hurdle models
in their full generality and the design of a consistent Vuong testing strategy for discriminating
between a numerous set of competing models. Other desirable extensions, like the use of more
general functional forms of the desired consumption relation6 or of less stringent distributional
assumptions on which semi-parametric or nonparametric estimation methods are based, will
be tackled once the actual scope of our models is established through diversified empirical
applications. Research is continuing in this direction.
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