Introduction to {mmetrics} package

This vignette shows you how to use {mmetrics} package.

Create Dummy Data

First, we create dummy data for this example.

# Dummy data
df <- data.frame(
  gender = rep(c("M", "F"), 5),
  age = (1:10)*10,
  cost = c(51:60),
  impression = c(101:110),
  click = c(0:9)*3,
  conversion = c(0:9)
)

head(df)
#>   gender age cost impression click conversion
#> 1      M  10   51        101     0          0
#> 2      F  20   52        102     3          1
#> 3      M  30   53        103     6          2
#> 4      F  40   54        104     9          3
#> 5      M  50   55        105    12          4
#> 6      F  60   56        106    15          5

Define metrics

As a next step, we define metrics to evaluate using mmetrics::define.

# Example metrics
metrics <- mmetrics::define(
  cost = sum(cost),
  ctr  = sum(click)/sum(impression)
)

How to use mmetrics::add()

mmetrics::add() with sigle grouping key

Call mmetrics::add() with grouping key (here gender) then we will get new data.frame with defined metrics.

mmetrics::add() with multiple grouping keys

We can also use multiple grouping keys.

mmetrics::add() without any grouping keys

Summarize all data when you do not specify any grouping keys.

When you set summarize = FALSE , mmetrics::add() behave like dplyr::mutate().

In this situation, mmetrics::disaggregate() is used inside to disaggregate metrics. See the result of disaggregate(metrics) to check wether output metrics is what you want.