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Abstract

pdynmc is an R-package for IV- or GMM-estimation of linear dynamic panel data
models that are based on nonlinear moment conditions as proposed by Ahn and Schmidt
(1995). This paper provides a description of the variety of options regarding instrument
type, covariate type, estimation methodology, and general configuration from the perspec-
tive of an applied statistician. All functionality is demonstrated for a publicly available
unbalanced panel data set (Arellano and Bond 1991) and we relate to other software and
packages.
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1. Introduction

The linear dynamic panel data model allows to account for dynamics and unobserved individual-
specific heterogeneity simultaneously. Due to the presence of unobserved individual-specific
effects and lagged dependent variables, standard estimation techniques like pooled ordinary
least squares (OLS) or the within estimation generally do not lead to consistent estimates (see,
e.g., Hsiao 2014). A suitable alternative for obtaining parameter estimates in linear dynamic
panel data models is deriving moment conditions (or population orthogonality conditions)
from the model assumptions. The moment conditions may be linear (Anderson and Hsiao
1982; Holtz-Eakin, Newey, and Rosen 1988; Arellano and Bover 1995) or nonlinear (Ahn and
Schmidt 1995) in parameters and determine the natural instruments available for estimation.
Usually, the number of moment conditions exceeds the number of parameters and the mo-
ment conditions need to be aggregated appropriately. This can be achieved by the generalized
method of moments (GMM), where (weighted) linear combinations of the moment conditions
are employed to obtain parameter estimates.

Theoretical results and evidence from Monte Carlo simulations in the literature suggest that
incorporating the nonlinear moment conditions proposed by Ahn and Schmidt (1995) may
prove valuable for particular data generating processes (DGPs). One example is when the
process exhibits high persistence and the linear moment conditions fail to identify the model
parameters: The nonlinear moment conditions may still provide identification (Bun and
Kleibergen 2014; Bun and Sarafidis 2015; Gorgens, Han, and Xue 2016). Further note that
the nonlinear moment conditions only impose standard assumptions about the (unknown)
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underlying DGP. Despite these results, however, and although the nonlinear moment con-
ditions were proposed by Ahn and Schmidt more than 20 years ago, standard estimation
routines are generally not available across statistical software. To the best of our knowledge,
there is currently only the implementation provided by (Kripfganz 2019) for the commercial
statistical software Stata (Stata Corporation 2011) that is explicitly designed to incorporate
nonlinear moment conditions into GMM estimation.

Our package pdynmc provides an implementation of GMM estimation of linear dynamic
panel data models based on different sets of moment conditions in the statistical open source
software R (R Core Team 2019). The building blocks from which the sets of moment conditions
available for GMM estimation can be constructed are the nonlinear (in parameters) Ahn and
Schmidt (1995) moment conditions and the two different types of linear moment conditions
proposed by Holtz-Eakin et al. (1988) and Arellano and Bover (1995). Our package allows to
use various combinations of these moment conditions to obtain parameter estimates. In their
standard form, the Holtz-Eakin et al. (1988), Arellano and Bover (1995), and Ahn and Schmidt
(1995) moment conditions are derived from the lagged dependent variable. Additional moment
conditions, which may arise from assumptions about the non-lagged dependent explanatory
variables, can also be included in estimation. Since the moment conditions employed in GMM
estimation of linear dynamic panel data models are derived from model assumptions, a basic
understanding of these assumptions is vital for setting up a plausible estimation routine.
The methodological part of this paper briefly reviews the assumptions implied when using
particular moment conditions in estimation and provides further references for more detailed
overviews.

The structure of the paper is as follows. Section 2 briefly sketches the linear dynamic panel
data model, states the underlying assumptions frequently used in the literature, and describes
the moment conditions arising from the model assumptions. Section 3 covers GMM estimation
of linear dynamic panel data models and illustrates the minimization criterion, estimation in
one, two, or multiple steps, and closed form solutions. Section 4 outlines the computation
of standard errors, specification- and overidentifying restrictions testing, and the testing of
general linear hypotheses. Related software and R-packages are summarized in Section 5.
Section 6 illustrates the estimation of linear dynamic panel data models with pdynmc for the
data set of Arellano and Bond (1991) on adjustments of employment of firms located in the
United Kingdom. Section 7 concludes and sketches functionality we plan to add to future
releases of the package.

2. Linear dynamic panel data model

2.1. Model and standard assumptions

For a given sample with a cross section dimension n and a time series dimension T , consider
the two equations

yi,t = αyi,t−1 + βxi,t + ui,t, i = 1, . . . , n; t = 2, . . . , T, (1)

ui,t = ηi + εi,t, (2)

where yi,t and yi,t−1 denote the dependent variable and its lag, α is the lag parameter, and xi,t
is a non-lagged dependent explanatory variable with corresponding slope coefficient β. The
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second equation requires that the (unobserved) composite error term ui,t can be separated
into an unobserved individual-specific effect ηi and an idiosyncratic remainder component
εi,t.

1 The initial time period is denoted by t = 1.

Combining the Equations (1) and (2) yields the single equation form of the model

yi,t = αyi,t−1 + βxi,t + ηi + εi,t, i = 1, . . . , n; t = 2, . . . , T. (3)

We impose the following set of standard assumptions (SA) from the literature (see Ahn and
Schmidt 1995):

The data are independently distributed across i, (4)

E(ηi) = 0, i = 1, ..., n,

E(εi,t) = 0, i = 1, ..., n; t = 2, ..., T,

E(εi,t · ηi) = 0, i = 1, ..., n; t = 2, ..., T,

E(εi,t · εi,s) = 0, i = 1, ..., n; t 6= s,

E(yi,1 · εi,t) = 0, i = 1, ..., n; t = 2, ..., T,

n→∞, while T is fixed, such that
n

T
→ 0.

The six assumptions in Equation (4) imply: First, the assumption that the data are indepen-
dently distributed across individuals allows for dependence of the model components across
time, but not across individuals. Second, the unobserved individual-specific effect and the
idiosyncratic remainder component need to be zero in expectation (if this is not the case, a
constant can be included in the model to ensure the property). Third, orthogonality of the εi,t
with the following model components is required: The unobserved individual-specific effects,
the idiosyncratic remainder components of all other time periods, and the initial conditions
of the yi,t-process. Due to the zero mean assumption concerning the εi,t, uncorrelatedness
follows from orthogonality of these model components. The last assumption requires that the
cross section dimension is large, while the time series dimension is finite.

2.2. Moment conditions from standard assumptions

Usual approaches in applied statistics obtain (OLS) estimates of the model parameters of
Equation (3) by: (i) ignoring the unobserved individual-specific effects, (ii) deducting the
individual-specific mean over time from all left-hand- and right-hand side variables (also
referred to as the within transformation) of the equation, or (iii) including one dummy per
observation in the estimation (the least squares dummy variables – or LSDV – approach; the
within estimation and LSDV yield identical slope coefficient estimates). However, due to the
presence of the lagged dependent variable and the unobserved individual-specific effects, the
techniques (i)-(iii) do not yield consistent estimates without imposing additional restrictions
on the model (see, e.g., Hsiao 2014).

1We only include one lag of the dependent variable, one non-lagged dependent explanatory variable, and
omit unobserved time-specific effects for simplicity of exposition and notational convenience. Extending the
representation is straightforward. Unobserved time-specific effects can, e.g., be incorporated by including time
dummies.
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The unobserved individual-specific effects can be eliminated from Equation (3) by first differ-
encing the equation. Utilizing the ∆-operator to indicate the first differencing gives

∆yi,t = α∆yi,t−1 + β∆xi,t + ∆εi,t, i = 1, . . . , n; t = 2, . . . , T. (5)

Due to the first differenced lagged dependent variables ∆yi,t−1 = yi,t−1 − yi,t−2 and the first
differenced error terms ∆εi,t = εi,t−εi,t−1 not being orthogonal, estimating Equation (5) with
OLS still leads to biased coefficient estimates. The standard assumptions stated in Equation
(4) provide a remedy: The assumptions imply two sets of moment conditions, whose sample
analogues can be used in estimation. Note that the following moment conditions refer to the
population and that the expectation is taken over the cross section dimension.

Holtz-Eakin et al. (1988) (hereafter HNR) propose the linear (in parameters) moment condi-
tions

E(yi,s ·∆ui,t) = 0, t = 3, . . . , T ; s = 1, . . . , t− 2. (6)

Depending on the time series dimension available for estimation, Equation (6) provides
0.5(T −1)(T −2) moment conditions. Equivalent moment conditions can be derived from the
non-lagged dependent explanatory variables. Endogenous (xend), predetermined (xpre), and
(strictly) exogenous (xex) variables provide the linear moment conditions (see the Equations
(9.5)-(9.7) of Blundell, Bond, and Windmeijer 2001):

E(xi,s ·∆ui,t) = 0, t = 3, . . . , T, where (7)

s = 1, . . . , t− 2, for x = xend,

s = 1, . . . , t− 1, for x = xpre,

s = 1, . . . , T, for x = xex.

For endogenous non-lagged dependent explanatory variables, moment conditions analogous
to Equation (6) result. When the non-lagged dependent explanatory variables are predeter-
mined, one more moment condition per time period is available and for exogenous non-lagged
dependent explanatory variables, all non-lagged dependent explanatory variables can be used
as instruments for time periods t = 3, . . . , T – compared to the case for endogenous non-lagged
dependent explanatory variables.

A further set of moment conditions implied by the SA in Equation (4) is elaborated on by Ahn
and Schmidt (1995) (hereafter AS). The authors point out that the following T −3 additional
moment conditions can be used in estimation:

E(ui,t ·∆ui,t−1) = 0, t = 4, . . . , T. (8)

Rewriting the equation and expressing the moment conditions in terms of parameters and
observable variables reveals that the AS moment conditions are nonlinear in parameters.
Equations (6) and (8) are slightly adjusted versions of the AS-Equations (3) and (4).2

2The notation is adjusted to reflect the time periods of a data set. Hence, t = 0 of AS is changed to
t = 1. Additionally note, that the AS moment conditions could be built on reference period T instead of
t via E(ui,T · ∆ui,t) = 0, with t = 3, . . . , T − 1 – as originally proposed in Ahn and Schmidt (1995). The
HNR moment conditions could then also be expressed based on the reference period T by E(yi,s · ∆ui,T ) =
0, with s = 1, . . . , T −2. We adjust the AS moment conditions here, for all moment conditions to be expressed
based on the same reference period.
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For a given panel data set, parameter estimates can be obtained by using the sample analogues
of the moment conditions. This yields the m sample moment conditions M = 1

n

∑n
i=1 Mi. For

the linear dynamic panel data model specified in Equation (3), consider the following moment
conditions and the corresponding vector of individual moment condition contributions3 Mi

to be available for estimation:



E(yi,1 · ∆ui,3)
E(yi,1 · ∆ui,4)
E(yi,2 · ∆ui,4)
E(yi,1 · ∆ui,5)

...
E(yi,3 · ∆ui,5)

...
E(yi,T−2 · ∆ui,T )

E(xi,1 · ∆ui,3)
E(xi,2 · ∆ui,3)
E(xi,1 · ∆ui,4)

...
E(xi,3 · ∆ui,4)

...
E(xi,T−1 · ∆ui,T )

E(ui,4 · ∆ui,3)
...

E(ui,T · ∆ui,T−1)


︸ ︷︷ ︸

m×1

=



0
0

...

0

0

...

0

0
...
0



, Mi︸︷︷︸
m×1

=



yi,1 · ∆̃ui,3

yi,1 · ∆̃ui,4

yi,2 · ∆̃ui,4

yi,1 · ∆̃ui,5

...

yi,3 · ∆̃ui,5

...

yi,T−2 · ∆̃ui,T

xi,1 · ∆̃ui,3

xi,2 · ∆̃ui,3

xi,1 · ∆̃ui,4

...

xi,3 · ∆̃ui,4

...

xi,T−1 · ∆̃ui,T

ũi,4 · ∆̃ui,3

...

ũi,T · ∆̃ui,T−1



.

The dashed lines separate the different sets of moment conditions shown here: Two sets of
HNR moment conditions (derived from the lagged dependent variable and one predetermined
xi,t) and the nonlinear moment conditions. Compared to the case illustrated, T moment
conditions are available for each time period t = 3, . . . , T from the xi,t-process if xi,t is
exogenous – while when xi,t is endogenous, one moment condition per time period is lost and
the moment conditions resulting from the xi,t are structured equivalently to the ones that
arise from the yi,t-process4.

Further consider decomposing the individual moment condition contributions into M i =
Z ′i · s̃i, where Z ′i denotes the transpose of a matrix that does not depend on parameter
estimates, while the column vector s̃i does. For the linear dynamic panel data model in
Equation (3) with a predetermined xi,t, we obtain:

3In the following, a tilde sign denotes the estimates during optimization, while a hat sign indicates the final
optimization results (i.e., the coefficient estimates and the corresponding residuals).

4When T is used as reference period (and all moment conditions involve ui,T ), the number of HNR moment
conditions reduces substantially and only one moment condition is available per time period. For the nonlinear
moment conditions, the number of moment conditions remains unchanged.
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Z′i =



yi,1 0 · · · 0 0 · · · 0
0 yi,1

yi,2
0

...
...

...
...

...

0
yi,1

...
0 0 yi,T−2 0 · · · 0

xi,1 0 · · · 0 0 · · · 0
xi,2 0
0 xi,1

xi,2

xi,3

0
...

...
...

...
...

0
xi,1

...
0 0 xi,T−1 0 · · · 0

0 · · · 0 1 0 · · · 0
...

...
...

. . .
...
0

0 · · · 0 0 · · · 0 1


︸ ︷︷ ︸

m×(2T−5)

, s̃i =



∆̃ui,3

∆̃ui,4

...

∆̃ui,T

ũi,4 · ∆̃ui,3

ũi,5 · ∆̃ui,4

...

ũi,T · ∆̃ui,T−1


︸ ︷︷ ︸

(2T−5)×1

.

Compared to the case shown, xi,1, . . . , xi,T can be used for each time period t = 3, . . . , T in
the HNR-part of the matrix Z ′i if xi,t is strictly exogenous – while an equivalent structure to
the yi,t-part results for the xi,t-part of the matrix if xi,t is endogenous. Changing the reference
period from t to T reduces the HNR-part of the matrix to a column vector; the structure of
the AS-part remains unchanged.

Stacking the Z ′i for all cross sectional observations horizontally yields the m × n(2T − 5)
matrix Z ′ = (Z ′1, . . . ,Z

′
n). Concatenating the column vectors s̃i yields the n(2T − 5) vector

s̃.

2.3. Moment conditions from extended assumptions

Under SA, the moment conditions stated in Equations (6), (7), and (8) can be employed to ob-
tain coefficient estimates. Additional moment conditions can be derived from the assumption

E(∆yi,t · ηi) = 0, i = 1, . . . , n. (9)

This expression requires that the dependent variable and the unobserved individual-specific
effects are constantly correlated over time for each individual. Deviations from the assumption
are required to be unsystematic over both, the cross section and the time series dimension
(see Section 6.5 in Arellano 2003, which also provides an example). For the case of non-
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lagged dependent explanatory variables, Blundell et al. (2001) state that if ∆yi,t and ηi are
correlated, it is still possible that ∆xi,t and ηi are uncorrelated – while the reverse is unlikely
to be the case (for a derivation confirming this statement see Fritsch 2019).

From the ‘constant correlated effects’5 assumption, the additional T − 2 Arellano and Bover
(1995) (hereafter AB) linear moment conditions can be derived:

E(∆yi,t−1 · ui,t) = 0, t = 3, . . . , T. (10)

By rewriting these moment conditions, it can be shown that the AB moment conditions
encompass the nonlinear AS moment conditions and render them redundant for estimation
(for a derivation see Fritsch 2019).

Additional AB moment conditions can be derived from the non-lagged dependent explanatory
variables. Depending on the nature of the xi,t-process, the further AB moment conditions are
available for estimation:

E(∆xi,v · ui,t) = 0, where

v = 2, . . . , t− 1; t = 3, . . . T, for x = xend,

v = t; t = 2, . . . , T, for x = xex or x = xpre.

From an endogenous xi,t, T − 2 moment conditions can be derived – while T − 1 moment
conditions are available for an exogenous or predetermined xi,t.

When using the HNR and AB moment conditions to estimate the linear dynamic panel data
model in Equation (3) with a predetermined explanatory variable, M i is as follows:

5Bun and Sarafidis (2015) use this term and point out that this assumption is also referred to as ‘effect
stationarity’ (Kiviet 2007a) or ‘mean stationarity’ (Arellano 2003) in the literature.
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Z′i =



yi,1 0 · · · 0 0 · · · 0 0 · · · 0
0 yi,1

yi,2
... 0

...
...

...
...

...

0
yi,1

...
0 · · · 0 yi,T−2 0 · · · 0 0 · · · 0

xi,1 0 · · · 0 0 · · · 0 0 · · · 0
xi,2 0
0 xi,1

xi,2

xi,3

... 0
...

...
...

...
...

0
xi,1

...
0 · · · 0 xi,T−1 0 · · · 0 0 · · · 0

0 · · · 0 ∆yi,2 0 · · · 0 0 · · · 0
...

... 0 ∆yi,3
...

...
...

...
. . . 0

0 · · · 0 0 · · · 0 ∆yi,T−1 0 · · · 0

0 · · · 0 0 · · · 0 ∆xi,2 0 · · · 0

0 ∆xi,3

...
...

...
...

...
...

. . . 0
0 · · · 0 0 · · · 0 0 · · · 0 ∆xi,T


︸ ︷︷ ︸

m×(3T−5)

,

s̃′i = (∆̃ui,3, ∆̃ui,4, · · · , ∆̃ui,T ũi,3, ũi,4, · · · , ũi,T , ũi,2, ũi,3, · · · , ũi,T )︸ ︷︷ ︸
1×(3T−5)

.

Compared to the case shown, no additional AB moment conditions arise if xi,t is strictly
exogenous. When xi,t is endogenous, the structure of the xi,t-part corresponding to the
AB moment conditions of Z′

i reduces by the last element and is equivalent to the yi,t-part
corresponding to the AB moment conditions. The changes of the HNR-part of the matrix are
as illustrated in Section 2.2. Changing the reference period from t to T yields the changes
in the number of HNR moment conditions discussed earlier; the number of AB moment
conditions remains the same, with the structure of the AB-part of the matrix Z ′i reducing to
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a column vector6.

3. GMM estimation

3.1. Minimization criterion

For a given loss function, the p parameters of the linear dynamic panel data model in Equation
(3) can be estimated by employing the moment conditions derived from the model assump-
tions. According to the necessary (but not sufficient) order condition for identification (see,
e.g., Hayashi 2000), at least as many moment conditions need to be available as there are
model parameters for the parameters to be estimable7. Each moment condition is a function
of the p model parameters. If the number of moment conditions and the number of model pa-
rameters coincide (m = p), the system of equations (or moment conditions) possesses a unique
solution. Due to the number of moment conditions increasing with the time series dimension,
the number of available moment conditions typically exceeds the number of model parameters
with linear dynamic panel data models. Therefore, obtaining parameter estimates from the
system of equations defined by the moment conditions requires an aggregation scheme such as
the generalized method of moments (GMM). For a given sample, GMM estimation minimizes
the aggregated squared distance of the moment conditions from zero and can be represented
as

L2
W = M

′ ·W ·M . (11)

The index of the L2
W -norm expresses that the norm depends on the weighting matrix W and

the superscript indicates that the norm is a quadratic form. The m×m weighting matrix W
guides the aggregation of the m moment conditions. Recall the notation developed in Section
2, where the moment conditions are decomposed into a vector that depends on the parameter
estimates s̃ and a matrix Z that does not. Plugging these two terms into Equation (11) gives:

L2
W =

1

n2
· s̃′Z ·W ·Z ′s̃.

Minimizing the equation yields the GMM estimator θ̂.

3.2. One-step, two-step, and multiple-step estimation

6When using the reference period T instead of t, the AB moment conditions can be built on

E(∆yi,v · ui,T ) = 0, with t = 3, . . . , T,

E(∆xi,v · ui,T ) = 0, where

v = 2, . . . , T − 1, for x = xend,

v = 2, . . . , T, for x = xex or x = xpre.

7A discussion of the assumptions required for identification, consistency, and asymptotic normality of the
GMM estimator when estimating linear dynamic panel data models is provided in Fritsch (2019).
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In practice, GMM estimation is frequently carried out in multiple steps. In order to start
the estimation process, an initial estimate of the weighting matrix Ŵ is required. Obviously,
plugging in different weighting matrices into Equation (11) yields varying objective function
values and different estimates for the model parameters. Different propositions for the first
step weighting matrix – with varying asymptotic efficiency – exist in the literature (see Blun-
dell et al. 2001) for the various types of moment conditions which can be employed in the
estimation of the linear dynamic panel data model in Equation (3). Common examples in-
volve identity or tridiagonal matrices. Generally, the proposed weighting matrices are based
on the expected variances and covariances of the moment conditions and are derived from the
underlying model assumptions. Assuming consistency and asymptotic normality of the GMM
estimator, the optimal W is proportional (up to a multiplicative constant) to the inverse of
the variance covariance matrix of the moment conditions (see, e.g., Arellano 2003). A possible

estimate for the first step weighting matrix Ŵ 1 of the one-step GMM estimator (GMM1S) is

Ŵ 1 =

(
1

n
·Z ′HZ

)−1

. (12)

The structure of the matrix H varies depending on the types of moment conditions employed
in estimation. When only HNR moment conditions are used, Arellano and Bond (1991)
propose to set the matrix to

HHNR =



2 −1 0 0 . . . 0
−1 2 −1 0

0 −1
. . .

. . .
. . .

...
...

. . .
. . . 0

2 −1
0 . . . 0 −1 2


.

The tridiagonal matrix HHNR accounts for the serial correlation in the idiosyncratic remain-
der components introduced by first differencing Equation (3) to eliminate the unobserved
individual-specific effects from the equation.

When using only the AB moment conditions in estimation, a choice for H often encountered
in practice is the identity matrix with T − 2 diagonal elements

HAB =


1 0 . . . 0
0 1
...

. . .
...
0

0 . . . 0 1

 .

For the AS moment conditions, an identity matrix with T − 3 diagonal elements is frequently
used as HAS (see, e.g., Blundell et al. 2001; Kripfganz 2019).

Finally, when two different sets of moment conditions are employed, a general representation
of H is

H =

(
A B
B′ C

)
,
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where the matrices A, B, and C are chosen depending on the particular moment conditions
employed in GMM estimation. Note that A and C correspond to the expected variance
covariance properties within a set of moment conditions, while B corresponds to the expected
covariance across the different sets of moment conditions and B′ is the transpose.

An estimate for the weighting matrix Ŵ 2 of the two-step GMM estimator (GMM2S) is

Ŵ 2 =

(
1

n
·Z ′ŝ1ŝ

′
1Z

)−1

, (13)

where ŝ1 denotes the residuals from one-step estimation. When the nonlinear moment condi-
tions are used, nonlinear optimization techniques are required to obtain coefficient estimates.
Per default, GMM estimation by pdynmc is based on numerical optimization. To initialize the
optimization procedure, starting values are drawn for all parameter estimates from a uniform
distribution over the interval [-1, 1]. GMM2S then employs the parameter estimates obtained
by GMM1S as starting values. For the optimization procedure, we rely on the R-package
optimx (Nash and Varadhan 2011; Nash 2014). All optimization routines implemented in
optimx are available in pdynmc. From our experience, the Variable Metric method (Fletcher
1970; Nash 1990) seems to work satisfactory in the estimation of linear dynamic panel data
models. In all settings encountered while programming the package, the results from this
method were close to closed form results for GMM estimation based on linear moment con-
ditions. The Variable Metric method is named BFGS in optimx8 and serves as the default
procedure in pdynmc. Note that for GMM estimation based on linear moment conditions,
the closed form results are computed and stored along with the optimization results.

Alternatively to one-step and two-step procedures, GMM estimation can be carried out with
the continuously updating estimator (GMMCU). The GMMCU is an iterative procedure,
where the weighting matrix, the corresponding parameter estimates, and the residuals are
updated until either one of two stopping criteria is attained: The procedure stops, when the
change in coefficient estimates from one estimation step to the next does not exceed a certain
pre-specified threshold ztol. Otherwise, GMMCU stops after a pre-specified number of maxi-
mum iterations hiter. Asymptotically, one-step, two-step, and multiple-step GMM estimation
are equivalent – though, differences occur in finite samples and Monte Carlo evidence exists
that the finite sample performance may improve when using GMMCU (see, e.g., Hansen,
Heaton, and Yaron 1996). In pdynmc all three different estimation procedures are available.

3.3. Closed form solution

When estimating the linear dynamic panel data model in Equation (3) by GMM based on
linear moment conditions only, numerical optimization methods are not required to obtain
coefficient estimates. One-step estimates θ̂1 are available from:

θ̂1 = (X ′ZŴ 1Z
′X)−1X ′ZŴ 1Z

′y. (14)

The matrix X contains all right-hand side variables9 from Equation (3) and Ŵ 1 is the
estimated one-step weighting matrix from Equation (12). In order to calculate the two-

8For more details and references on the available optimization methods in optimx see the package docu-
mentation and Nash and Varadhan (2011).

9Note that – depending on the moment conditions employed in estimation – all matrices and vectors given
in the following may contain observations in levels and/or first differences.
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step coefficient estimates θ̂2, Ŵ 1 needs to be replaced by the estimated two-step weighting
matrix Ŵ 2:

θ̂2 = (X ′ZŴ 2Z
′X)−1X ′ZŴ 2Z

′y. (15)

Two comments on the closed form expressions may be helpful here. First, recall from Equa-
tions (12) and (13) that the one-step- and two-step weighting matrices depend on the number
of cross sectional units in the data set n. Considering the closed form for the coefficient
estimates in greater detail reveals that for Equations (14) and (15), the factor n cancels from
both expressions. Second, as mentioned in the previous section, updating the weighting ma-
trix and computing coefficient estimates does not necessarily have to stop at the second step.
The procedure can be iterated until either one of the stopping criteria is reached.

4. Standard errors and inference

4.1. Standard errors

Asymptotic one-step standard errors for the estimated coefficients can be obtained by taking
the square root of the main diagonal elements of the estimated one-step variance covariance
matrix

Ω̂(θ̂1) = n · (X ′ZŴ 1Z
′X)−1σ̂2

1, with σ̂2
1 = ŝ′1ŝ1 ·

1

N − p
. (16)

In the formula, N is the number of observations available for estimation (i.e., the cross section
dimension times the time series dimension minus the number of missing observations), p
denotes the number of estimated coefficients, and ŝ1 are residuals from GMM1S (see Doornik,
Arellano, and Bond 2012). As stated in Windmeijer (2005), robust one-step standard errors
are available from

Ω̂r(θ̂1) = n·(X ′ZŴ 1Z
′X)−1X ′ZŴ 1Ŵ

−1

2 Ŵ 1Z
′X· (17)

(X ′ZŴ 1Z
′X)−1,

while asymptotic two-step standard errors can be computed from

Ω̂(θ̂2) = n · (X ′ZŴ 2Z
′X)−1. (18)

Since asymptotic two-step GMM standard errors for the estimated coefficients exhibit a down-
ward bias in small samples, they can, however, be substantially lower than one-step GMM
standard errors (see, e.g., Arellano and Bond 1991). Windmeijer (2005) relates the bias to the
dependence of the two-step weighting matrix on parameter estimates (the one-step estimates)
and proposes an analytic correction of the two-step standard errors based on a first order
Taylor-series expansion:

Ω̂c(θ̂2) =F +D
θ̂2,Ŵ 2

F + FD′
θ̂2,Ŵ 2

(19)

+D
θ̂2,Ŵ 2

Ω̂r(θ̂1)D′
θ̂2,Ŵ 2

,
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where the expression F is defined as

F = n · (X ′ZŴ 2Z
′X)−1.

This expression is equivalent to the estimated uncorrected two-step variance covariance matrix
of the coefficient estimates Ω̂(θ̂2) in Equation (18). The computation of the correctionD

θ̂2,Ŵ 2

is involved when multiple parameters are estimated. For a single parameter, it equals

D
θ̂2,Ŵ 2

= − 1

n
· FX ′ZŴ 2

∂Ŵ
−1

(θ)

∂θ

∣∣∣∣∣
θ=θ̂1

Ŵ 2Z
′ŝ2.

The vector ŝ2 denotes the two-step residuals and the first derivative of the weighting matrix
for two-step GMM estimation evaluated at θ̂1 can be calculated from

∂Ŵ
−1

(θ)

∂θ

∣∣∣∣∣
θ=θ̂1

= − 1

n
·Z ′(Xŝ′1 + ŝ1X

′)Z.

Two remarks on the computation of the standard errors might be helpful here: First, similar
to the computation of the closed form expressions for the coefficient estimates, the formulas
in the Equations (17), (18), and (19) do not depend on the number of cross sectional units

in the data set n, as the term cancels out with the 1/n from Ŵ 1 and Ŵ 2. Equation (16)
depends on the total number of observations available in the data set by the degrees of freedom
correction in the calculation of σ̂2

1s. This affects the calculation of the standard errors when
there are missing observations. Second, note that an alternative to the analytic correction of
the two-step standard errors proposed by Arellano and Bond (1991) is to replace the standard
errors of the second estimation step by those from the first step.

4.2. Specification testing

Arellano and Bond (1991) suggest a test for second order serial correlation in the idiosyncratic
remainder components. The test is generalized to higher orders j by Arellano (2003) and
can be used as a specification test in the estimation of linear dynamic panel data models.
The reasoning is that, although, first order serial correlation is present in the idiosyncratic
remainder components for GMM estimation based on first differenced equations10, no higher
order autocorrelation should prevail. The serial correlation test of Arellano and Bond (1991)
boils down to checking if the deviation of the covariance of the residuals of period t with the
residuals of period t− j from zero is large enough to indicate that j-th order serial correlation
might be present in the idiosyncratic remainder components. The null hypothesis of the test
is that there is no serial correlation in the εi,t. The corresponding test statistics are defined
as

Tmj =
r̂j
σ̂r̂j

, with Tmj

a∼ N (0, 1),

where σ̂r̂j is the standard error of the j-th order autocovariance of the residuals r̂j . For the
linear dynamic panel data model specified in Equation (3), this autocovariance of the residuals

10First order serial correlation in the εi,t is introduced by first differencing. Even when the εi,t in levels are
i.i.d., the first differenced εi,t are correlated (for a derivation see, e.g., Fritsch 2019).
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is the sample equivalent to

rj =
1

T − 3− j
·

T∑
t=4+j

rt,j , with rt,j = E(∆si,t∆si,t−j),

the average j-th order autocovariance of the idiosyncratic remainder components (see Arellano
2003). As detailed by Arellano and Bond (1991) and Doornik et al. (2012), the corresponding
scaled autocovariance of the residuals can be calculated by

r̂t,j =
1√
n
· ŝ′t ŝt−j ,

where ŝt and ŝt−j are column vectors which contain the residuals from one-step, two-step, or
multiple-step GMM estimation for all cross sectional units at the respective time period; the
index at ŝt−j indicates that the corresponding residuals are lagged j time periods. According
to Arellano and Bond (1991), the estimated variance of the j-th order autocovariance of the
residuals is available from

σ̂2
r̂j

=
1

n
·ŝ′t−j Ω̂(ŝ)ŝt−j − 2 · ŝ′t−j X(X ′ZŴZ ′X)−1X ′ZŴZ ′Ω̂(ŝ)ŝt−j +

ŝ′t−j XΩ̂(θ̂)X ′ŝt−j .

Note that the vectors of residuals ŝ, ŝ−j and the matrices Ŵ , Ω̂(ŝ), and Ω̂(θ̂) depend on
the actual estimation step and the latter two matrices also depend on the estimated type of
variance covariance matrix (i.e., robust or asymptotic for one-step estimation; Windmeijer-
corrected or asymptotic for two-step estimation). All corresponding indices are dropped here
in order to provide one general formula instead of the four specific ones.

4.3. Overidentifying restrictions testing

When the system of equations from which the model parameters are estimated by GMM is
overidentified (i.e., when the number of moment conditions exceeds the number of parameters
to be estimated), it is possible to assess the validity of the overidentifying restrictions by
the Sargan test (Sargan 1958). The presumed null hypothesis is that the overidentifying
restrictions are valid. According to Arellano and Bond (1991) and Doornik et al. (2012), the
test statistic of the Sargan test can be computed from

TS = n · ŝ′1ZŴ 1Z
′ŝ1 · σ̂−2

1 , with TS
a∼ χ2(m− p).

Under suitable conditions, which ensure asymptotic normality of the GMM estimator11 and
the additional assumption of conditional homoscedasticity, the test statistic is asymptotically
χ2-distributed with m− p degrees of freedom; m equals the number of instruments employed
in estimation (see, e.g., Hayashi 2000).

An alternative test statistic – where a finite fourth moments assumption is imposed instead of
conditional homoscedasticity – is the J-test (Hansen 1982). The J-test statistic results from

11For Theorems, Propositions, and extensive discussions for GMM estimators see Newey and McFadden
(1994); Hayashi (2000). A discussion of GMM estimation of linear dynamic panel data models and the under-
lying assumptions is provided by Fritsch (2019).
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replacing Ŵ 1 in the above formula by Ŵ 2, the one-step residuals by the two-step residuals,
and dropping the multiplication with σ̂−2

1 :

TJ = n · ŝ′2ZŴ 2Z
′ŝ2, with TJ

a∼ χ2(m− p).

The idea underlying the test statistics TS and TJ is, that when the moment conditions are
valid, the sample analogues of these conditions should be close to zero. A large value of the
test statistic indicates that some of the moment conditions may be invalid, that some of the
model assumptions may be incorrect, or both (see, e.g., Hayashi 2000).

Variations of the two tests allow to check the validity of subsets of moment conditions. These
tests are also referred to as ‘difference-in-Hansen’/‘difference-in-Sargan’ tests (see, e.g., Rood-
man 2009), ‘incremental Hansen’/‘incremental Sargan’ tests (see, e.g., Arellano 2003), or
C-statistics (see, e.g., Hayashi 2000). The test statistic is obtained by carrying out the unre-
stricted estimation and the estimation under the null hypothesis, computing the desired test
statistic for both estimations, and then taking the difference of the two test statistics. This
difference is asymptotically χ2-distributed with TJH1

− TJH0
degrees of freedom, where TJH1

are the degrees of freedom of the unrestricted model and TJH0
those of the restricted one (see

Hayashi 2000).

4.4. Testing linear hypotheses

The Wald test is one possibility to test general linear hypotheses of the form

H0 : Rθ = r,

where the matrixR is a c×pmatrix, which selects the elements of the p×1 vector of population
parameters θ required to express the left-hand side of the c equations of the null hypothesis
(i.e., the restrictions under the null) and the vector r is a c×1 vector that states the right-hand
side of the equations. Tests of three different standard null hypotheses are currently available
in pdynmc: (a) all population parameters corresponding to the right-hand side variables of the
linear dynamic panel data model are zero jointly, (b) all population parameters corresponding
to the lagged-dependent and non-lagged dependent explanatory variables are zero jointly, and
(c) all population parameters corresponding to the time dummies are zero jointly.

In case of one-step GMM estimation, the Wald statistic can be obtained from

TW = n · (Rθ̂1 − r)′
(
R Ω̂(θ̂1) R′

)−1
(Rθ̂1 − r), with TW

a∼ χ2(c).

In order to calculate the Wald statistic for two-step GMM estimation, the vector of param-
eter estimates θ̂1 and the estimated variance covariance matrix of the parameter estimates
Ω̂(θ̂1) need to be replaced by their equivalents from two-step estimation. Under suitable
conditions12, the Wald statistic TW is asymptotically χ2-distributed with c degrees of free-
dom (see Hayashi 2000). The estimated variance covariance matrix of coefficient estimates
to be used in both calculations may be either the non-robust versions stated in Equations
(16) and (18) or the robust/corrected versions of the matrix from Equations (17) and (19).
The equivalent matrices need to be chosen in multiple-step GMM estimation to obtain the
corresponding Wald statistic. As usual, a large value of the Wald statistic casts doubt on the
null hypothesis.

12See Newey and McFadden (1994); Hayashi (2000) and the discussion in Fritsch (2019).
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5. Related software and R-packages

GMM estimation of linear dynamic panel data models based on linear moment conditions is
available in a number of software environments and packages such as Gauss, Ox, R, and Stata.
We highlight the particularities of a few selected implementations here.

The Gauss and Ox implementations, which are both named DPD (Arellano and Bond 1988;
Doornik et al. 2012), represent an important reference for later software. The packages include
the computation of one-step and two-step closed form GMM estimators and standard spec-
ification testing such as overidentifying restrictions tests, serial correlation tests, and Wald
tests. Some estimators for static panel data models like the within estimator and feasible
generalized least squares estimation are also available.

In Stata (e.g., Stata Corporation 2011), the command xtabond2 (Roodman 2009a) is a popu-
lar choice for GMM estimation of linear dynamic panel data models based on linear moment
conditions. The command calculates the closed form solution for the estimators and is accom-
panied by extended model diagnostics to assess the validity of certain subsets of moment con-
ditions and the overall specification. Employing nonlinear moment conditions and GMMCU
are not supported. The recently contributed command xtdpdgmm (Kripfganz 2019) enables
the user to include nonlinear moment conditions into the analysis. The command also allows
for GMMCU and the numerical optimization of the GMM objective function is based on a
Gauss-Newton technique.

In R (R Core Team 2019), the packages plm (Croissant and Millo 2008) and panelvar (Sigmund
and Ferstl 2019) implement the functionality available in xtabond2 with some additional
features. For example, the package panelvar allows the user to perform lag selection based on
information criteria, structural analysis based on impulse response functions, the computation
of corresponding bootstrapped confidence intervals, and allows for GMMCU. The package plm
provides a variety of functions for the estimation of static and linear panel models such as
the within estimator, different random effects estimators, feasible generalized least squares
estimation, and a number of different specification tests. The function pgmm is specifically
designed to estimate linear dynamic panel data models – GMMCU is not implemented. Both
R packages do not allow to incorporate nonlinear moment conditions into the analysis.

6. Sample session

The functionality of pdynmc is illustrated by replicating some of the empirical results in
Arellano and Bond (1991). Additionally, we show how to incorporate the linear AB and the
nonlinear AS moment conditions into the analysis. We explain all arguments which need to be
set to reproduce the results and point out some alternative options. We also draw comparisons
between pdynmc, the Stata implementations xtabond2, xtdpdgmm, and the pgmm function
in the R-package plm – where we are aware of differences between the implementations.

The data set employed in Arellano and Bond (1991) is an unbalanced panel of n = 140 firms
located in the UK observed over T = 9 time periods and is available from package R-plm:

data(EmplUK, package = "plm")

dat <- EmplUK

dat[,c(4:7)] <- log(dat[,c(4:7)])

names(dat[,c(4:7)]) <- c("n", "w", "k", "ys")
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The authors investigate employment equations and consider the dynamic specification

ni,t =α1ni,t−1 + α2ni,t−2+ (20)

β1wi,t + β2wi,t−1 + β3ki,t + β4ki,t−1 + β5ki,t−2 + β6ysi,t + β7ysi,t−1 + β8ysi,t−2+

γ3d3 + · · ·+ γTdT + ηi + εi,t, i = 1, ..., n; t = 3, ..., T.

In the equation, i denotes the firm and t is the time series dimension. The natural logarithm of
employment n is explained by its first two lags and the further explanatory variables natural
logarithm of wage w, natural logarithm of capital k, natural logarithm of output ys, and
their lags of order up to one (for w) or two (for k and ys). The variables d3, . . . , dT are time
dummies with corresponding coefficients γ3, . . . , γT ; the unobserved individual-specific effect
is represented by η, and ε is an idiosyncratic remainder component. The goal is to estimate
the lag parameters α1 and α2 and the coefficients of the further explanatory variables βj , with
j = 1, . . . , 8, while controlling for (unobserved) time effects and accounting for unobserved
individual-specific heterogeneity.

6.1. GMM estimation with HNR moment conditions

When reproducing the results in Table 4 on p.290 of Arellano and Bond (1991) with pdynmc,
the model structure of the underlying Equation (20) can be specified by:

m1 <- pdynmc(

dat = dat, varname.i = "firm", varname.t = "year",

use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = FALSE,

include.y = TRUE, varname.y = "emp", lagTerms.y = 2,

fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,

varname.reg.fur = c("wage", "capital", "output"),

lagTerms.reg.fur = c(1,2,2),

include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = "year",

w.mat = "iid.err", std.err = "corrected",

estimation = "onestep", opt.meth = "none")

The first arguments relate to the data set (dat), the individual (varname.i), and time series
dimension (varname.t). Next, the moment conditions are defined – here, only moment condi-
tions from equations in differences are used. The moment conditions are derived for the depen-
dent variable (varname.y), and for the corresponding number of lags of the dependent variable
to be included as explanatory variables (lagTerms.y). Further non-lagged dependent explana-
tory variables (fur.con) are included in the equations in differences, not in the equations in
levels (compare fur.con.diff = TRUE, fur.con.lev = FALSE), their variable names are
stated in (varname.reg.fur), their lag structure is specified in (lagTerms.reg.fur). Note
that the first element of the vector denoting the lag structure corresponds to the first ele-
ment of the vector with the variable names, the second element to the second, and so on.
Also note that all names given in the vectors that refer to variables in the data set need to
have the same names as in the data set. The time dummies are included by (include.dum)
into the equations in differences not in the equations in levels (dum.diff = TRUE, dum.lev

= FALSE), the dummy indicator variable is (varname.dum). Note that time dummies can be
constructed from one or multiple variables by pdynmc by simply passing a scalar or vector
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with the respective variable names in the data to varname.dum. Specifying the matrix H in
Equation (12), which governs the structure of the one-step weighting matrix, and carrying
out one-step estimation can be achieved by the commands in the last two codelines. Choosing
the option iid.err uses the matrix HHNR proposed by Arellano and Bond (1991). Alter-
natively, an identity matrix can be employed for H by the option identity. Code std.err

= "corrected" yields robust standard errors for one-step estimation (in case of a two-step
estimation, the correction of (Windmeijer 2005) was employed by this argument).

One-step, two-step, and GMMCU (accessible by setting the argument estimation to cue)
estimation in pdynmc is carried out by numerical optimization of the GMM objective function
given in Equation (11). Since a closed form solution exists for the estimator when employing
only linear moment conditions, numerical optimization is not required and can be switched
off by setting opt.meth = "none".

The standard output can be accessed via summary(m1) and yields the estimation results when

Table 1: Column (a1) of Table 4 in Arellano and Bond (1991)
Estimate Std.Err.rob z.rob Pr(>|z.rob|)

L1.n 0.68623*** 0.14459 4.74600 < 0.001
L2.n -0.08536 0.05602 -1.52400 0.12751
w -0.60782*** 0.17821 -3.41100 < 0.001
L1.w 0.39262* 0.16799 2.33700 0.01944
k 0.35685*** 0.05902 6.04600 < 0.001
L1.k -0.05800 0.07318 -0.79300 0.42778
L2.k -0.01995 0.03271 -0.61000 0.54186
ys 0.60851*** 0.17253 3.52700 < 0.001
L1.ys -0.71116** 0.23172 -3.06900 0.00215
L2.ys 0.10580 0.14120 0.74900 0.45386
1979 0.00955 0.01029 0.92900 0.35289
1980 0.02202 0.01771 1.24300 0.21387
1981 -0.01177 0.02951 -0.39900 0.68989
1982 -0.02706 0.02928 -0.92400 0.35549
1983 -0.02132 0.03046 -0.70000 0.48393
1984 -0.00770 0.03141 -0.24500 0.80646

Equations in first differences: L (2/8) .n,D.w, L.D.w,D.k,
L.D.k, L2.D.k,D.ys, L.D.ys, L2.D.ys,D.1979−D.1984
* p < 0.05, ** p < 0.01, *** p < 0.001 (refers to t-test of the null
that the coefficient is equal to zero)

specifying all arguments as stated in this section and reproduces the results in Table 4, column
(a1) on p.290 of Arellano and Bond (1991).

Changing the argument estimation to twostep yields the two-step GMM coefficient esti-
mates (the pdynmc-output object is assigned to m2) from Table 4, column (a2) on p.290 of
Arellano and Bond (1991). Note that the standard errors presented in Table 2 are based
on the Windmeijer-correction and deviate from the conventional standard errors reported in
Arellano and Bond (1991). The standard errors from the original analysis can be reproduced
by setting std.err = "unadjusted".

Regarding the arguments

use.mc.diff = TRUE, include.y = TRUE, include.x = FALSE

it has to be noted that the HNR moment conditions (use.mc.diff) derived from the lagged
dependent variable (include.y) are employed, while none are derived from the further non-
lagged dependent explanatory variables (by default include.x = FALSE). The latter argu-
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Table 2: Column (a2) of Table 4 in Arellano and Bond (1991)
Estimate Std.Err.rob z.rob Pr(>|z.rob|)

L1.n 0.62871** 0.19341 3.25100 0.00115
L2.n -0.06519 0.04505 -1.44700 0.14790
w -0.52576*** 0.15461 -3.40100 < 0.001
L1.w 0.31129 0.20300 1.53300 0.12528
k 0.27836*** 0.07280 3.82400 < 0.001
L1.k 0.01410 0.09246 0.15200 0.87919
L2.k -0.04025 0.04327 -0.93000 0.35237
ys 0.59192*** 0.17309 3.42000 < 0.001
L1.ys -0.56599* 0.26110 -2.16800 0.03016
L2.ys 0.10054 0.16110 0.62400 0.53263
1979 0.01122 0.01168 0.96000 0.33706
1980 0.02307 0.02006 1.15000 0.25014
1981 -0.02136 0.03324 -0.64200 0.52087
1982 -0.03112 0.03397 -0.91600 0.35967
1983 -0.01799 0.03693 -0.48700 0.62626
1984 -0.02337 0.03661 -0.63800 0.52347

Equations in first differences: L (2/8) .n,D.w, L.D.w,D.k,
L.D.k, L2.D.k,D.ys, L.D.ys, L2.D.ys,D.1979−D.1984
* p < 0.05, ** p < 0.01, *** p < 0.001 (refers to t-test of the null
that the coefficient is equal to zero)

ment implies that the non-lagged dependent explanatory variables in the model are assumed
to be exogenous and instrument themselves.

Different capabilities for testing hypotheses about the population parameters are available
in pdynmc. Among them are the tests for serial correlation in the idiosyncratic remainder
components proposed by Arellano and Bond (1991), Hansen tests, and Wald tests. In the
following, carrying out these tests and interpreting the results is briefly illustrated based on
the two-step GMM estimation results presented in Table 2.

Employing the test for second order serial correlation of Arellano and Bond (1991) described
in Section 4.2 by m.test(m2, t.order = 2) yields:

Serial correlation test of degree 2

data: GMM Estimation; H0: no serial correlation of order 2 in epsilon

normal = -0.36744, p-value = 0.7133

The test does not reject the null hypothesis at any plausible significance level and does not
provide any indication that the model specification might be inadequate. The test statistic
and p-value are similar to xtabond2 and pgmm.

Computing the Hansen J-test of the overidentifying restrictions described in Section 4.3 by
j.test(m2) yields:

J-Test of Hansen

data: GMM Estimation; H0: overidentifying restrictions valid

chisq = 31.381, df = 25, p-value = 0.1767

The test does not reject the overidentifying restrictions and does not provide any indications
that the validity of the instruments employed in estimation may be in doubt. Comparing the
results to xtabond2 shows that the degrees of freedom and the p-value differ. We consider
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25 degrees of freedom to be the appropriate number here, as 41 instruments are employed
in estimation to obtain 16 coefficient estimates. It seems that the function xtabond2 does
not correct the degrees of freedom for the number of dummies dropped in estimation13. The
difference in the p-value is due to the differences in the degrees of freedom. Our results are
equivalent to the results of pgmm for the overidentifying restrictions test. In pgmm, the above
test is referred to as ‘Sargan test’.

For the Wald test illustrated in Section 4.4, consider the null hypothesis that the popula-
tion parameters of all coefficients included in the model are zero jointly (wald.fct(param =

"all", object = m2):

Wald test

data: GMM Estimation; H0: beta = 0; tested model parameters: all

chisq = 1104.7, df = 16, p-value < 2.2e-16

The test rejects the null hypothesis. Comparing the test result to the implementation of
the test in xtabond2 – again – reveals differences concerning the degrees of freedom. We
consider 16 to be the appropriate number of degrees of freedom here, since this corresponds
to the number of estimated parameters. As noted previously, the differences seem to stem
from xtabond2 not adjusting the degrees of freedom for the dummies dropped in estimation.
Alternative hypotheses that can be tested via the Wald test in pdynmc are that all slope
parameters are zero jointly and that all parameters corresponding to the time dummies are
zero jointly (param = "time.dum" only tests the time dummies, while param = "slope" only
tests the slope parameters).

6.2. GMM estimation with HNR and AB moment conditions

When the ‘constant correlated effects’ assumption stated in Equation (9) holds, the HNR
moment conditions from equations in differences employed in Section 6.1 can be extended
by the AB moment conditions from equations in levels. The AB moment conditions are
particularly useful for data generating processes, which are highly persistent (Blundell and
Bond 1998). In this case, identification by the HNR moment conditions from equations in
levels may fail and GMM estimation based on HNR moment conditions is documented to
possess poor finite sample performance (see, e.g., Blundell and Bond 1998; Blundell et al.
2001; Bun and Sarafidis 2015).

In pdynmc, the AB moment conditions from equations in levels can be (additionally) incor-
porated by :

use.mc.lev = TRUE

In principle, both, the time dummies and the further explanatory variables can be included
in the equations in first differences and the level equations. It is recommended, though, to
include the dummies only in one of the equations, as it can be shown that incorporating
them in both equations renders one set of dummies redundant for estimation – while for the

13Dummies are dropped by the estimation routine in case of high collinearity.
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non-lagged dependent explanatory variables, this equivalence does not hold.14 The arguments
that govern accommodating non-lagged dependent explanatory variables and time dummies
which instrument themselves in the levels equations are:

fur.con.lev = TRUE, dum.lev = TRUE

Using these arguments together with the earlier specified ones – except for setting ‘dum.diff
= FALSE’ – leads to the time dummies being included in the level equations and the further
explanatory variables being included in both equations.

In order to obtain coefficient estimates, a decision about the matrix H in the one-step weight-
ing matrix is required. When using the HNR and AB moment conditions, the decision about
H effectively involves specifying the matrices A, B, and C in the general structure given
in Section 3.2. As mentioned, the diagonal elements A and C reflect the expected variance
covariance properties within a set of moment conditions, while B reflects the expected covari-
ances across different sets of moment conditions. In the given setting, A corresponds to the
variance covariance properties of the HNR moment conditions, C to those of the AB moment
conditions, and B to those across the HNR and AB moment conditions. Three different
options are currently available in pdynmc to set up the weighting matrix w.mat: iid.err,
identity, and zero.cov. The first option leads to HHNR being used for A, an identity for
C, and a matrix B, such that BB′ = HHNR. Setting w.mat to identity leads to an identity
matrix being used for the diagonal matrices A and C and an adequately dimensioned matrix
B with 1 on the diagonal15. When using the option zero.cov, the matrices A and C are as
for option iid.err, but B is set to a null matrix. In case nonlinear moment conditions are
used, the part of H which corresponds to the nonlinear moment conditions is set to an iden-
tity for all choices of w.mat. All elements of the matrices containing the expected covariance
properties of the nonlinear moment conditions with other moment conditions are always set
to zero.

The results presented in Table 3 are the two-step estimates of column (a2) of Table 4 in
Arellano and Bond (1991) extended by the AB moment conditions. All arguments are specified
as described above. Including the AB moment conditions into the analysis leads to substantial
changes in the coefficient estimates of the first lag of the dependent variable. Note that the
results indicate a markedly higher persistence of employment and render including two lags of
the dependent variable questionable (Blundell and Bond 1998, e.g., estimate a version of the
equation which contains only one lag of all explanatory variables). Note that the coefficient
estimates of the explanatory variables, besides the first lag of the dependent variable, appear
to be similar across estimations.

Equivalent results to Table 3 can be obtained from the pgmm function in the plm-package
– besides some minor numerical differences at the fifth digit. When replicating the results
with xtabond2, differences in the implementations become obvious: The instrument set for
the AB moment conditions is extended in similar fashion to the HNR moment conditions in
xtabond2, while this is not the case in pgmm. An argument is available in pdynmc to extend
the instrument set as in xtabond2:

14Note that this is the case in balanced panels. The results may also not be numerically
identical across function calls for different choices of the one-step weighting matrix. For a dis-
cussion, see https://www.statalist.org/forums/forum/general-stata-discussion/general/1357268-system-gmm-
time-dummies.

15Note that the matrix B is not necessarily a quadratic matrix.
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Table 3: Arellano and Bond (1991) estimation with AB moment conditions
Estimate Std.Err.corr z.corr Pr(>|z.corr|)

L1.n 1.11650*** 0.05192 21.50500 < 0.001
L2.n -0.11352* 0.04764 -2.38300 0.01717
w -0.44169** 0.15175 -2.91100 0.00360
L1.w 0.42159** 0.15528 2.71500 0.00663
k 0.28618*** 0.04751 6.02400 < 0.001
L1.k -0.16474* 0.06589 -2.50000 0.01242
L2.k -0.12321** 0.04250 -2.89900 0.00374
ys 0.55793** 0.17651 3.16100 0.00157
L1.ys -0.67392** 0.21707 -3.10500 0.00190
L2.ys 0.13372 0.14344 0.93200 0.35134
1978 -0.05313 0.35746 -0.14900 0.88155
1979 -0.03697 0.35698 -0.10400 0.91717
1980 -0.01933 0.35429 -0.05500 0.95614
1981 -0.05791 0.34696 -0.16700 0.86737
1982 -0.04334 0.34512 -0.12600 0.89973
1983 -0.01818 0.34583 -0.05300 0.95773
1984 -0.02815 0.34914 -0.08100 0.93544

Equations in first differences: L (2/8) .n,D.w, L.D.w, L2.D.w,
D.k, L.D.k, L2.D.k,D.ys, L.D.ys, L2.D.ys
Equations in levels: L (1/7) .D.n,w, L.w, L2.w, k, L.k, L2.k,
ys, L.ys, L2.ys, 1978− 1984
* p < 0.05, ** p < 0.01, *** p < 0.001 (refers to t-test of the null
that the coefficient is equal to zero)

inst.stata = TRUE

Due to the reasons described in Section 2.3, this argument is set to FALSE per default. When
setting the option to TRUE, the results from xtabond2 and pdynmc are very close to our
results.

6.3. GMM estimation with HNR and AS moment conditions

Recall, that the linear AB moment conditions from equations in levels comprise the nonlinear
AS moment conditions and render them redundant for estimation (Blundell and Bond 1998; a
derivation is provided in Fritsch 2019). Both sets of moment conditions may be useful in GMM
estimation when the lag parameter is close to unity and it can be shown that extending the
HNR moment conditions by either the AB- or the AS moment conditions may identify the lag
parameter – even when the individual moment conditions fail to do so (Bun and Kleibergen
2014; Gorgens et al. 2016). The AB moment conditions require the ‘constant correlated
effects’ assumption, while the AS moment conditions only require standard assumptions to
hold. Therefore, the latter may be useful in situations where the ‘constant correlated effects’
assumption is in doubt and the statistician aims to investigate a highly persistent dynamic
process with a structure similar to Equation (3). In pdynmc, including nonlinear moment
conditions into the analysis is available via:

use.mc.nonlin = TRUE

When extending the analysis of Arellano and Bond (1991) by the nonlinear AS moment
conditions, the results differ substantially from Table 2 and are very similar to the coefficient
estimates shown in Table 3. This casts doubt on the HNR moment conditions and may
be a hint that there is high persistence in the employment process – as high persistence
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Table 4: Estimation in Arellano and Bond (1991) extended by AS moment conditions
Estimate Std.Err.corr z.corr Pr(>|z.corr|)

L1.n 1.10900*** 0.06624 16.74100 < 0.001
L2.n -0.06960 0.06290 -1.10700 0.26829
L0.w -0.43855** 0.14709 -2.98100 0.00287
L1.w 0.43632** 0.14695 2.96900 0.00299
L0.k 0.30913*** 0.05093 6.07000 < 0.001
L1.k -0.19133** 0.06997 -2.73400 0.00626
L2.k -0.14991** 0.04806 -3.11900 0.00181
L0.ys 0.63172*** 0.17203 3.67200 < 0.001
L1.ys -0.67326** 0.21243 -3.16900 0.00153
L2.ys 0.05287 0.14523 0.36400 0.71586
1978 -0.13575 0.38199 -0.35500 0.72259
1979 -0.11641 0.38167 -0.30500 0.76037
1980 -0.09147 0.37873 -0.24200 0.80878
1981 -0.12311 0.37084 -0.33200 0.73989
1982 -0.11354 0.36750 -0.30900 0.75732
1983 -0.09785 0.36719 -0.26600 0.79024
1984 -0.10241 0.37359 -0.27400 0.78408

Equations in first differences: L (2/8) .n, u,D.w, L.D.w, L2.D.w,
D.k, L.D.k, L2.D.k,D.ys, L.D.ys, L2.D.ys
Equations in levels: w,L.w, L2.w, k, L.k, L2.k, ys, L.ys, L2.ys,
1978− 1984
* p < 0.05, ** p < 0.01, *** p < 0.001 (refers to t-test of the null
that the coefficient is equal to zero)

leads to the lag parameters not being identified by the HNR moment conditions (Bun and
Kleibergen 2014; Gorgens et al. 2016). Note that since the unobservable error term u (which
can be expressed in terms of observable model components and parameters) is included in
the instrument set for the equations in first differences, nonlinear moment conditions are
employed in estimation. Also note that the coefficient estimates in Table 4 are very close to
coefficient estimates obtained from xtdpdgmm.

6.4. Iterated GMM

Iterated GMM can be used, by specifying the following commands:

estimation = "iterative", max.iter = NULL, iter.tol = NULL,

When estimation = "iterative" is used, max.iter specifies the maximum number of it-
erations, iter.tol the search tolerance w.r.t. convergence. Unless changed by the user,
max.iter = 100 and iter.tol = 0.01 are employed.

6.5. Starting values

If numeric optimization techniques are used, the starting for all parameters are drawn from
the uniform distribution on an interval [-1, 1] by the following commands (set as default):

start.val.lo = -1, start.val.up = 1, seed.input = 42

As usual, the seed.input ensures reproducibility. The starting values can be varied by
the user via arguments start.val.lo and start.val.up and setting custom.start.val to
TRUE.
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7. Concluding remarks

The R-package pdynmc provides a function to estimate linear dynamic panel data models.
The implementation allows for general lag structures of the explanatory variables, which may
encompass lags of the dependent variable and further non-lagged dependent explanatory vari-
ables. For estimation, linear and nonlinear moment conditions are derived from the model
assumptions; further controls and external instruments (if available) may also be added. Esti-
mation is carried out by numerical optimization of the GMM objective function. Correspond-
ing closed form solutions are computed – where possible – and stored besides the results from
numerical optimization. The estimation routine can handle balanced and unbalanced panel
data sets and provides one-step-, two-step-, and continuously updating estimation. Account-
ing for (unobserved) time-specific effects is possible by including time dummies; alternatively,
both sides of the equation can be transformed such that the time-specific heterogeneity is
partialled out. The partialling out option is experimental at the moment. We plan to in-
vestigate the effects and implications of this way of dealing with unobserved time-specific
heterogeneity in greater detail in the future. Different choices for the weighting matrix, which
guides the aggregation of moment conditions in one-step GMM estimation are available. Con-
cerning the computation of standard errors for the coefficient estimates, the following options
are currently available in pdynmc: non-robust one- and two-step standard errors and robust
one-step- and Windmeijer-corrected two-step standard errors. Some standard hypothesis and
specification tests are also available. Among them are Wald tests, overidentifying restrictions
tests and a test for serial correlation in the idiosyncratic remainder components.

We plan to extend the package by additional features in the future. Next steps involve:

� Incorporate further diagnostics and tests to assess the validity of the estimated specifica-
tions and the underlying moment conditions and assumptions (e.g., testing the ‘constant
correlated effects’ assumption and testing for structural breaks).

� Add computation of confidence and prediction intervals.

� Expand the possible choices for the one-step weighting matrix by, e.g., the proposition in
Kiviet (2007b) for GMM estimation based on linear HNR- and AB moment conditions.

� Implement the IV estimator solely based on the nonlinear moment conditions proposed
by Pua, Fritsch, and Schnurbus (2019a,b).
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