
L1 and L2 Penalized Regression Models

Jelle Goeman

September 6, 2007

Contents

1 Introduction 2

2 Penalized likelihood estimation 2
2.1 the nki70 data . 2
2.2 the penalized function . 3
2.3 choice of lambda . 3
2.4 standardization . 3
2.5 penfit objects . 4
2.6 unpenalized covariates . 5
2.7 factors . 5
2.8 fitting in steps . 5

3 Cross-validation and optimization 6
3.1 cross-validation . 7
3.2 breslow objects . 8
3.3 profiling the cross-validated log likelihood 9
3.4 optimizing the cross-validated likelihood 10

1

1 Introduction

This short note explains the use of the penalized package. The package is de-
signed for penalized estimation in generalized linear models. At this moment,
the only supported models are linear regression, logistic regression and the Cox
proportional hazards model, but others are likely to be included in the future.
As to penalties, the package allows an L1 absolute value (“lasso”) penalty (Tib-
shirani, 1996, 1997), an L2 quadratic (“ridge”) penalty (Hoerl and Kennard,
1970; Le Cessie and van Houwelingen, 1992; Verweij and Van Houwelingen,
1994), or a combination of the two (the “naive elastic net” of Zou and Hastie,
2005). The package also includes facilities for likelihood cross-validation and for
optimization of the tuning parameter.

L1 and L2 penalized estimation methods shrink the estimates of the regres-
sion coefficients towards zero relative to the maximum likelihood estimates. The
purpose of this shrinkage is to prevent overfit arising due either collinearity of
the covariates or high-dimensionality. Although both shrinkage methods, the
effects of L1 and L2 penalization are quite different in practice. Applying an L2
penalty tends to result in all small but non-zero regression coefficients, whereas
applying an L1 penalty tends to result in many regression coefficients shrunk
exactly to zero and a few other regression coefficients with comparatively little
shrinkage. Combining L1 and L2 penalties tends to give a result in between,
with fewer regression coefficients set to zero than in a pure L1 setting, and more
shrinkage to the other coefficients. The amount of shrinkage is determined by
tuning parameters λ1 and λ2, for L1 and L2 respectively, where a value of zero
always means no shrinkage (= maximum likelihood estimation) and a value of
infinity means infinite shrinkage (= setting all regression coefficients to zero).
For more details about the methods, please refer to the above-mentioned papers.

It is important to note that shrinkage methods are generally not invariant
to the relative scaling of the covariates. Before fitting a model, it is prudent to
consider if the covariates already have a natural scaling relative to each other
or whether they should be standardized.

The main algorithm for L1 penalized estimation that used in this package
will be documented in a forthcoming paper. It has been combined with ideas
from Eilers et al. (2001) and Van Houwelingen et al. (2005) for efficient L2
penalized estimation.

2 Penalized likelihood estimation

The basic function of the package is the penalized function, which performs
penalized estimation for fixed values of λ1 and λ2. Its syntax has been loosely
modeled on that of the functions glm (package stats) and coxph (package sur-
vival), but it is slightly more flexible. Two main input types are allowed: one
using formula objects, one using matrices.

2.1 the nki70 data

As example data we use the 70 gene signature of Van ’t Veer et al. (2002) in the
gene expression data set of Van de Vijver et al. (2002).

2

> library(penalized)

> data(nki70)

This loads a data.frame with 295 breast cancer patients and 77 covariates.
The first two indicate the survival time and event status (time is in months),
the next five are clinical covariates (diameter of the tumor, lymph node status,
estrogen receptor status, grade of the tumor and age of the patients), and the
other 70 are gene expression measurements of the 70 molecular markers.

2.2 the penalized function

To fit a model to predict survival (Surv(time,event)) with the two markers
“DIAPH3” and “NUSAP1” at λ1 = 0 and λ2 = 1, we can say (all are equivalent)

> fit <- penalized(Surv(time, event), ~DIAPH3 + NUSAP1, data = nki70,

lambda2 = 1)

> fit <- penalized(Surv(time, event), nki70[, 10:11], data = nki70,

lambda2 = 1)

> fit <- penalized(Surv(time, event) ~ DIAPH3 + NUSAP1, data = nki70,

lambda2 = 1)

The covariates may be specified in the second function argument (penalized)
as a formula object with an open left hand side, as in the first line. Alternatively,
they may be specified as a matrix, as in the second line. If, as here, they are
supplied as a data.frame, they are coerced to a matrix.

For consistency with glm and coxph the third option is also allowed, in which
the covariates are included in the first function argument.

Use attach to avoid specifying the data argument every time.

> attach(nki70)

2.3 choice of lambda

It is difficult to say in advance which value of lambda1 or lambda2 to use. The
penalized package offers ways of finding optimal values using cross-validation.
This is explained in Section ??

Note that for small values of lambda1 or lambda2 the algorithm be very
slow, may fail to converge or may run into numerical problems, especially in
high-dimensional data. When this happens, increase the value of lambda1 or
lambda2 .

2.4 standardization

If the covariates are not on the same scale in a natural way, it is advisable to stan-
dardize them. The function argument standardize (default: FALSE) standardizes
the covariates to unit second central moment before applying penalization. This
standardization makes sure that each covariates is affected more or less equally
by the penalization.

The fitted regression coefficients that the function returns have been scaled
back and correspond to the original scale of the covariates.

3

2.5 penfit objects

The penalized function returns a penfit object, from which useful information
can be extracted.

> coefficients(fit)

DIAPH3 NUSAP1
-0.003347245 1.610876235

> residuals(fit)

[1] -0.12993363 0.71048110 -0.35170595 -0.20835122 -0.42640209 -0.36211082
[7] 0.74649177 -0.61721035 0.73673593 -0.44704599 -0.22460950 0.68845952
[13] 0.93996917 -0.67997913 0.94948604 0.16863313 -0.59195437 -0.26745471
[19] 0.80008576 0.62000958 -0.62140001 0.75004500 -0.95837455 -0.81087266
[25] 0.91449205 -1.23676097 -0.40968870 0.91061049 -0.55575761 -0.32862313
[31] 0.60671164 -0.40183288 0.80661766 -0.31719394 0.94870766 0.20208607
[37] -0.48991812 -0.50785174 -0.49283996 0.78584340 0.55295465 -0.46627185
[43] -0.20266445 -0.16518805 -0.39959140 -0.32196958 -0.53846156 -0.48486697
[49] 0.77151870 -0.53925553 0.86070571 0.95689622 0.75463968 -0.29199390
[55] -0.13588499 -0.24660422 -0.57657142 -0.40936722 -0.28811049 0.58716502
[61] 0.88842941 0.77270364 0.79608318 -0.11263132 0.87925059 -0.28498404
[67] -0.26210767 -0.37312428 0.97771185 -0.44077885 -0.51232607 0.00000000
[73] 0.97445478 -0.24820082 -0.16619852 -0.22048742 -0.20562994 -0.50146186
[79] 0.69349646 -0.10674793 0.99328316 -0.20115664 -0.46919776 -0.40857248
[85] -0.29487005 -0.24853058 -0.25164899 0.81512763 -0.47900003 -0.27256394
[91] 0.95656111 -0.63983679 0.67564267 -0.55777432 0.73463695 0.75003384
[97] -0.11744175 0.88999857 -0.42726618 0.97613861 -0.62139475 -0.58088239
[103] -0.35706145 0.47941718 -0.09761778 -0.29740158 -0.22907926 -0.12569284
[109] -0.42835134 -0.39221302 0.57616189 0.89271966 -0.26544486 -0.23038969
[115] -0.21655779 -0.19855736 -0.19964839 -0.61347376 -0.33562178 -0.13084269
[121] -0.21060922 -0.15174868 -0.14392871 -0.28763617 0.70907738 0.69706807
[127] -0.17691026 0.81423467 -0.79709884 0.49514854 -1.10379660 -0.63325914
[133] -0.52759344 0.89621461 -0.38845885 0.70031464 -0.21708706 -0.44000875
[139] -0.54941392 0.53020161 -0.42178369 -0.20314618 -0.11758312 -0.33595144

> fitted.values(fit)

[1] 0.4023261 1.0605204 0.8671254 0.6451380 1.3203100 1.1783128 0.7849620
[8] 1.3615191 1.2242175 0.5909803 0.7647654 1.3883721 1.0340419 0.8989103
[15] 1.7786194 1.0990400 0.7825445 0.8281459 1.1737099 1.5011198 0.8214706
[22] 0.7294193 1.2669400 1.0719473 1.3030135 1.6349579 0.6322409 2.0758688
[29] 0.8576578 0.5071387 0.9163257 0.6201177 1.3351461 0.6023242 1.4370682
[36] 1.3727073 0.7560528 0.9643671 0.8478672 1.3240965 0.6898906 0.8854104
[43] 0.4184755 0.3410916 0.8251038 0.6648249 1.1118524 1.0011866 0.7434808
[50] 1.1134918 1.3343857 0.5883087 1.7971514 0.6029291 0.9952950 0.5439902
[57] 1.0948599 1.3938408 0.9809778 0.9106826 0.9271613 0.7739138 0.5612994
[64] 0.2776907 1.0749732 0.8824236 0.8529014 1.2141507 1.0512123 1.3648261
[71] 1.5863647 0.7354024 1.8171231 0.8763932 0.5658838 0.6827165 0.7001425
[78] 1.7074108 1.3106208 0.3634625 0.9588171 0.7102809 0.8909665 1.3911348
[85] 1.0039932 0.5482396 0.5551186 1.0327885 1.0566377 0.6012553 0.4499945

4

[92] 1.4114313 0.7996978 1.2304078 1.0900148 1.2708685 0.3427188 0.8566860
[99] 0.9425167 0.4720855 2.0220257 1.4321562 0.8803293 1.9796288 0.3323755
[106] 1.0126127 0.7093202 0.3891949 1.3263456 1.2762657 2.2573646 1.3253340
[113] 0.8637606 0.7133779 0.6705488 0.7273243 1.0150449 2.0887963 1.1427474
[120] 0.4455019 0.7170963 0.5166840 0.4900581 0.9793628 1.0272432 0.6255146
[127] 0.5477843 1.2122066 1.0537388 1.3141934 1.7034040 1.0894401 1.0894112
[134] 1.1700266 1.1336016 1.4561498 0.7064038 1.4981711 1.8706811 0.8921070
[141] 0.8709279 0.6610400 0.3640840 1.1438698

> basehaz(fit)

A "breslow" object with 1 survival curve and 50 time points.

See help(penfit) for more information.

2.6 unpenalized covariates

In some situations not all covariates are subject to a penalty. Any additional
covariates that should be included in the model without being penalized can
be specified separately. using the third function argument (unpenalized). For
example

> fit <- penalized(Surv(time, event), nki70[, 8:77], ~ER, lambda2 = 1)

This adds estrogen receptor status as an unpenalized covariate.
In rare cases each covariate may have to penalized in a different way, or some

covariates have to be given an L2 penalty and others an L1 penalty. In those
cases, the arguments lambda1 and lambda2 may be supplied as vectors of the
same length as the number of covariates in the function argument penalized .

2.7 factors

If some of the factors included in the formula object penalized are factor , these
are automatically made into dummy variables, as in glm and coxph, but in a
special way that is more appropriate for penalized regression.

Unordered factors are turned into as many dummy variables as the factor
has levels. This ensures a symmetric treatment of all levels and guarantees that
the fit does not depend on the ordering of the levels. See help(contr.none)
for details.

Ordered factors are turned into dummy variables that code for the differ-
ence between successive levels (one dummy less than the number of levels). L2
penalization on such factors therefore leads to small successive differences; L1
penalization leads to ranges of successive levels with identical effects.

To override the automatic choice of contrasts, use C (package stats).

2.8 fitting in steps

In some cases it may be interesting to visualize the effect of changing the tuning
parameter lambda1 or lambda2 on the values of the fitted regression coefficients.
This can be done using the function argument steps in combination with the
plotpath function. At this moment, this functionality is only available for
visualizing the effect of lambda1 .

5

> plotpath(fit)

10 5 2 1

−
1

0
1

2
3

L1−penalty

co
ef

fic
ie

nt

TSPYL5

Contig63649_RC

QSCN6L1

Contig32125_RC

SCUBE2

MMP9

RUNDC1

KNTC2

GPR180RAB6B
ZNF533
RTN4RL1

Contig40831_RC

COL4A2

GPR126

PECI.1

ORC6L

MS4A7

IGFBP5HRASLS

PITRM1

IGFBP5.1

NMU

PRC1

Contig20217_RC

CENPA

EGLN1

ESM1

C20orf46

When using the steps argument, the function starts fitting the model at
the maximal value of λ1, that is the smallest value that shrinks all regression
coefficients to zero. From that value it continues fitting the model for steps suc-
cessively decreasing values of λ1 until the specified value of lambda1 is reached.

If the argument steps is supplied to penalized, the function returns a list
of penfit objects. These can be accessed individually or their coefficients can be
plotted using plotpath.

> fit <- penalized(Surv(time, event), nki70[, 8:77], lambda1 = 1,

steps = 50, trace = FALSE)

> plotpath(fit)

3 Cross-validation and optimization

Cross-validation can be used to assess the predictive quality of the penalized
prediction model or to compare the predictive ability of different values of the
tuning parameter.

The penalized package uses likelihood cross-validation for all models. Like-
lihood cross-validation has some advantages over other optimization criteria: it
tends to be a continuous function of the tuning parameter; it can be defined in
a general way for almost any model, and it does not require calculation the ef-
fective dimension of a model, which is problematic in L1 penalized models. For

6

the Cox proportional hazards model, the package uses cross-validated log partial
likelihood (Verweij and Van Houwelingen, 1993), which is a natural extension
of the cross-validated log likelihood to the Cox model.

Five functions are available for calculating the cross-validated log likelihood
and for optimizing the cross-validated log likelihood with respect to the tuning
parameters. They have largely the same arguments. See help(cvl) for an
overview.

3.1 cross-validation

The function cvl calculates the cross-validated log likelihood for fixed values of
λ1 and λ2.

It accepts the same arguments as penalized (except steps: see profL1 be-
low) as well as the fold argument. This will usually be a single number k to
indicate k-fold cross-validation. In that case, the allocation of the subjects to
the folds is random. Alternatively, fold can give the precise allocation of the
subjects into the folds by giving a vector of the length of the number of subjects
with values form 1 to k, each indicating the fold of the corresponding subject.
The default is to do leave-one-out cross-validation.

The function cvl returns a names list with four elements:

cvl the cross-validated log likelihood.

fold the fold allocation used; this may serve as input to a next call to cvl to
ensure comparability.

predictions the prediction made on each left-out subject. The format depends
on the model used. In logistic regression this is just a vector of probabili-
ties. In the Cox model this is a collection of predicted survival curves (a
breslow object). In the linear model this is a collection of predicted means
and predicted standard deviations (the latter are the maximum likelihood
estimates of σ2).

fullfit the fit on the full data (a penfit object)

> fit <- cvl(Surv(time, event), nki70[, 8:77], lambda1 = 1, fold = 10)

> fit$cvl

[1] -252.7349

> fit$fullfit

Penalized cox regression object
70 regression coefficients of which 28 are non-zero

Loglikelihood = -214.92
L1 penalty = 24.29771 at lambda1 = 1

> fit <- cvl(Surv(time, event), nki70[, 8:77], lambda1 = 2, fold = fit$fold)

7

3.2 breslow objects

The breslow class is defined in the penalized package to store estimated survival
curves. They are used for the predictions in cross-validation and for the baseline
hazard in the penalized function. See help(breslow) for details.

> fit$predictions

A "breslow" object with 144 survival curves and 51 time points.

> time(fit$predictions)

[1] 0.0000000 0.3531828 0.6488706 0.9363276 0.9609856 1.2101300
[7] 1.3880903 1.5003422 1.6098563 1.6125941 1.7166324 1.7330595
[13] 1.9466119 1.9657769 1.9739904 2.2231348 2.2970568 2.3353867
[19] 2.3408624 2.6146475 2.6803559 2.6967830 2.8117728 2.8528405
[25] 3.1211499 3.2197125 3.4195756 3.4387406 3.6550308 3.9151266
[31] 4.2190281 4.4462697 4.6214921 4.6625599 4.9719370 5.1170431
[37] 6.5653662 6.9952088 8.1286790 8.3039014 8.5284052 8.5612594
[43] 8.9253936 8.9883641 9.9986311 11.2114990 11.7399042 12.4654346
[49] 14.0123203 17.4209446 17.6591376

> as.matrix(fit$predictions)[1:2,]

0 0.353182752 0.648870637 0.9363276 0.960985626 1.210130048 1.388090349
125 1 0.998685 0.9973606 0.9959858 0.9946032 0.9931895 0.9931895
127 1 0.989432 0.9788884 0.9681762 0.9574688 0.9466753 0.9356891

1.500342231 1.609856263 1.612594114 1.716632444 1.733059548 1.94661191
125 0.9931895 0.9917613 0.9902746 0.9887726 0.9872397 0.9856904
127 0.9246843 0.9246843 0.9134758 0.9022695 0.8909130 0.8794765

1.965776865 1.973990418 2.223134839 2.29705681 2.335386721 2.340862423
125 0.9856904 0.9841091 0.9824831 0.9808350 0.9791760 0.9774997
127 0.8681047 0.8565477 0.8446641 0.8328476 0.8210618 0.8092300

2.614647502 2.680355921 2.696783025 2.811772758 2.85284052 3.121149897
125 0.9757876 0.9740095 0.9740095 0.9721435 0.9702287 0.9682503
127 0.7971578 0.7847284 0.7722717 0.7594478 0.7462694 0.7329316

3.219712526 3.419575633 3.438740589 3.655030801 3.915126626 4.219028063
125 0.9662446 0.9641873 0.9621165 0.9599871 0.9578311 0.9556501
127 0.7194082 0.7194082 0.7059928 0.6925437 0.6791403 0.6657654

4.446269678 4.621492129 4.66255989 4.971937029 5.117043121 6.565366188
125 0.9534276 0.9511821 0.9488971 0.9465588 0.9441326 0.9409462
127 0.6657654 0.6524527 0.6390528 0.6390528 0.6253918 0.6078132

6.995208761 8.128678987 8.303901437 8.528405202 8.561259411 8.925393566
125 0.9372360 0.9320941 0.9268622 0.9215675 0.9161356 0.9103283
127 0.5879861 0.5644805 0.5415987 0.5192460 0.4971154 0.4741562

8.988364134 9.998631075 11.21149897 11.73990418 12.46543463 14.01232033
125 0.9042337 0.8959155 0.8854297 0.8725759 0.8578365 0.8366626
127 0.4509372 0.4202807 0.3850881 0.3390516 0.2849061 0.2102364

17.42094456 17.65913758
125 0.8366626 NA
127 0.2102364 0.2102364

> plot(fit$predictions)

8

> plot(fit$predictions)

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3.3 profiling the cross-validated log likelihood

The functions profL1 and profL2 can be used to examine the effect of the
parameters λ1 and λ2 on the cross-validated log likelihood. The profL1 can be
used to vary λ1 while keeping λ2 fixed, vice versa for profL2.

The minimum and maximum values between which the cross-validated log
likelihood is to be profiled can be given as minlambda1 and maxlambda1 or min-
lambda2 and maxlambda2 , respectively. The default value of minlambda1 and
minlambda2 is at zero and the default value of maxlambda1 is at the maximal
value of λ1, that is the smallest value that shrinks all regression coefficients to
zero, but maxlambda2 has no default.

The number of steps between the minimal and maximal values can be given
in the steps argument (default 100). These steps are equally spaced if the
argument log is FALSE or equally spaced on the log scale if the argument log
is TRUE. Note that the default value of log differs between profL1 (FALSE) and
profL2 (FALSE). If log is TRUE, minlambda1 or minlambda2 must be given by
the user as the default value is not usable.

By default, the profiling is stopped prematurely when the cross-validated
log likelihood drops below the cross-validated log likelihood of the null model
with all penalized regression coefficients equal to zero. This is done because it
avoids lengthy calculations at small values of λ when the models are most likely
not interesting. The automatic stopping can be controlled using the option
minsteps (default steps/5). The algorithm only considers stopping prematurely
after it has done at least minsteps steps. Setting minsteps=steps cancels the

9

> plot(fit1$lambda, fit1$cvl, type = "l")

1 2 3 4 5 6

−
26

4.
0

−
26

3.
0

−
26

2.
0

−
26

1.
0

fit1$lambda

fit
1$

cv
l

automatic stopping.
The functions profL1 and profL2 return a named list with the same elements

as returned by cvl, but each of cvl, predictions, fullfit is now a vector or
a list (as appropriate) as multiple cross-validated likelihoods were calculated.
An additional vector lambda is returned which lists the values of λ1 or λ2 at
which the cross-validated likelihood was calculated.

The allocation of the subjects into cross-validation folds is done only once,
so that all cross-validated likelihoods are done with the same allocation. This
makes the cross-validated log likelihoods more comparable. As in cvl the allo-
cation is returned in fold.

> fit1 <- profL1(Surv(time, event), nki70[, 50:70], fold = 10)

> plot(fit1$lambda, fit1$cvl, type = "l")

> fit2 <- profL2(Surv(time, event), nki70[, 50:70], fold = fit1$fold,

minl = 0.01, maxl = 1000)

> plot(fit2$lambda, fit2$cvl, type = "l", log = "x")

3.4 optimizing the cross-validated likelihood

Often we are not interested in the whole profile of the cross-validated likelihood,
but only in the optimum. The functions optL1 and optL2 can be used to find
the optimal value of λ1 or λ2.

10

> plot(fit2$lambda, fit2$cvl, type = "l", log = "x")

1e−01 1e+00 1e+01 1e+02 1e+03

−
26

4
−

26
3

−
26

2
−

26
1

−
26

0
−

25
9

−
25

8
−

25
7

fit2$lambda

fit
2$

cv
l

The algorithm used for the optimization is the Brent algorithm for minimiza-
tion without derivatives (Brent, 1973, see also help(optimize)). When using
this algorithm, it is important to realize that this algorithm is guaranteed to
work only for unimodal functions and that it may converge to a local maximum.
This is especially relevant for L1 optimization, as the cross-validated likelihood
as a function of λ1 very often has several local maxima. It is recommended to
only use optL1 in combination with profL1 to prevent convergence to the wrong
optimum. The cross-validated likelihood as a function of λ2, on the other hand,
is far better behaved and practically never has local maxima. The function
optL2 can safely be used without combining it with profL2.

The functions optL1 and optL2 take the same arguments as cvl, and some
additional ones.

The arguments minlambda1 and maxlambda1 , and minlambda2 and maxlambda2
can be used to specify the range between which the cross-validated log likeli-
hood is to be optimized. Both arguments can be left out in both functions,
but supplying them can improve convergence speed. In optL1, the parameter
range can be use to ensure that the function converges to the right maximum.
In optL2 the user also can supply only one of minlambda2 and maxlambda2
to give the algorithm advance information of the order of magnitude of λ2. In
this case, the algorithm may search an find the optimum below minlambda2 or
above maxlambda2 .

The functions optL1 and optL2 return a named list just as cvl, with an
additional element lambda which returns the optimum found. The returned

11

cvl, predictions, fullfit all relate to the optimal λ found.

> opt1 <- optL1(Surv(time, event), nki70[, 50:70], fold = fit1$fold)

> opt1$lambda

[1] 2.319363

> opt1$cvl

[1] -260.6773

> opt2 <- optL2(Surv(time, event), nki70[, 50:70], fold = fit2$fold)

References

Brent, R. P. (1973). Algorithms for Minimization without Derivatives. Engle-
wood Cliffs: Prentice-Hall.

Eilers, P., J. Boer, G. van Ommen, and J. C. van Houwelingen (2001). Classifi-
cation of microarray data with penalized logistic regression. In M. L. Bittner,
Y. Chen, A. N. Dorsel, and E. R. Dougherty (Eds.), Proceedings of SPIE,
Volume 4266, pp. 187–198.

Hoerl, A. E. and R. W. Kennard (1970). Ridge regression: biased estimation
for nonorthogonal problems. Technometrics 12 (1), 55–67.

Le Cessie, S. and J. C. van Houwelingen (1992). Ridge estimators in logistic
regression. Applied Statistics 41 (1), 191–201.

Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Jour-
nal of the Royal Statistical Society Series B-Methodological 58 (1), 267–288.

Tibshirani, R. (1997). The LASSO method for variable selection in the Cox
model. Statistics in Medicine 16 (4), 385–395.

Van de Vijver, M. J., Y. D. He, L. J. van ’t Veer, H. Dai, A. A. M. Hart, D. W.
Voskuil, G. J. Schreiber, J. L. Peterse, C. Roberts, M. J. Marton, M. Parrish,
D. Atsma, A. Witteveen, A. Glas, L. Delahaye, T. van der Velde, H. Bartelink,
S. Rodenhuis, E. T. Rutgers, S. H. Friend, and R. Bernards (2002). A gene-
expression signature as a predictor of survival in breast cancer. New England
Journal of Medicine 347 (25), 1999–2009.

Van Houwelingen, J. C., T. Bruinsma, A. A. M. Hart, L. J. van ’t Veer, and
L. F. A. Wessels (2005). Cross-validated Cox regression on microarray gene
expression data. Statistics in Medicine 25 (18), 3201–3216.

Van ’t Veer, L. J., H. Y. Dai, M. J. van de Vijver, Y. D. D. He, A. A. M. Hart,
M. Mao, H. L. Peterse, K. van der Kooy, M. J. Marton, A. T. Witteveen,
G. J. Schreiber, R. M. Kerkhoven, C. Roberts, P. S. Linsley, R. Bernards,
and S. H. Friend (2002). Gene expression profiling predicts clinical outcome
of breast cancer. Nature 415 (6871), 530–536.

12

Verweij, P. J. M. and H. C. Van Houwelingen (1993). Cross-validation in survival
analysis. Statistics in Medicine 12 (24), 2305–2314.

Verweij, P. J. M. and H. C. Van Houwelingen (1994). Penalized likelihood in
cox regression. Statistics in Medicine 13 (23-24), 2427–2436.

Zou, H. and T. Hastie (2005). Regularization and variable selection via the elas-
tic net. Journal of the Royal Statistical Society Series B-Statistical Method-
ology 67, 301–320.

13

