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INTRODUCTION 

In the previous paper dealing with a model of the species-area relation for discrete 

sampling (KoBAYASHI, 1974), it was shown that the number  of species occurring in 

a given number  of quadrats can be predicted by a simple mathematical  model if a 

certain area is chosen as the quadrat  size. In this case, however, it was pointed out 

that since the quant i ty  representing sample size is essentially continuous, another 

model should be constructed for continuous expanding of sample area. The  purpose 

of this paper is to build a second model describing the species-area relation for 

continuous sampl ing and to make clear the implication of parameters  involved. 

MODELING 

The  model of species-area relation for discrete random samples showed that 

regardless of quadrat  size, if each component species is distr ibuted in negative or no 

association with one another, the number  of species (0~) newly added in n th  quadrat  

approaches to 

0~ oc 1 (1) 
n 

as n increases (KoBAYASm, 1974). A similar  relation may be expected also for 

continuous expanding of sample area if individuals or clusters of individuals in each 

species are distr ibuted at random throughout  a homogeneous habitat.  

Provided that  a sample area (x) corresponds to n quadrats each being Ax in size, 

then put t ing O,~=AS, we can rewrite the equation (1) as 

AS ~ 1 Ax Ax 
n =  n.Ax = x " (2) 

Tha t  is, if x is fully large, the increment  (AS) in the number  of species is proportional 

to the increment  (Ax) in the sample area and inversely proportional to the total area 

(x) sampled. The  relation (2) shows that AS-~oo as x-~0. This  can not be the case 

because AS must  have a finite value. Then  we write as 

[AS]x=0 oc Ax (3) 
E 

where E is a constant. 

1 Contribution from the Laboratory of Applied Zoology, Yamagata University, No. 79, 
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Combining the relations (2) and (3), we have 

AS c~ Ax 
E + x  ' 

whence the rate of increase (dS/dx)  in the number of species is expressed as 

dS A 
d x -  E + x  (4) 

where A is a proportional constant. The differential equation (4) represents a 

mathematical model describing the species-area relation for continuous sampling. 

Let S = 0  at x=0,  the solution of (4) is 

S = A  In (1-~ x ~) 
(throughout this paper the natural and the common logarithms are denoted by in 

and log respectively). 

The above equation shows that S = A  at x = ( e - 1 ) E  where e is the base of 

natural  logarithms. As will be shown later, the area ( e - 1 ) E  corresponds to the 

characteristic area previously proposed (KoBAYASHI, 1974), SO that it follows 

A = 2  

where 2 denotes the number of species occurring in the characteristic area. Then the 

final form of the model is 

S--2 In ( 1 + ~ ) .  (5) 

If 2 and E are replaced by a and a/O respectively, the equation (5) becomes 

identical with the logarithmic series distribution proposed by FISHER el al. (1943): 

S-~a  in (l+px/,~) (6) 

where a is the index of diversity and O the number of individuals per unit area. 

APPLICATION OF THE MODEL 

The equation (6) has already been applied to plant communities by WILLIAMS 

(1950) and HOPKINS (1955): The fit was good for larger area, but HOPKINS noticed 

the consistent discrepancy in smaller area. Since all visible plants such as Sper- 

matophyta,  Pteridophyta, Bryophyta and Lichens were recorded in these cases, the 

data mingled them may include two or more groups of species each having different 

values of 2 and E. Such records have been rather common to treatises on the 

species-area relation of plant communities (e.g., ARCHIBALD, 1949a and 1949b; 

KILBURN, 1966). As has been pointed out, the equation (5) is the relation expected 

for a group of species characterized by 2 and E, so that it is quite possible that the 

discrepancy between observed and expected plots arises from indiscrimination of the 

groups of species each having different 2 and E. All data of the sort ought to be 

rearranged for testing availability of the equation (5). 

Fig. 1 shows the result applied the equation (5) to the data of Wisconsin jack 

pine stand (KILBURN, 1966). At first the equation was fitted for the group of 
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Fig. 1. Species-area relation for the jack pine woodland (Data 
from KtLB'dRN, 1966). A is the individual curve for bryophytes 
and lichens, $1=3.7 log (1+x/17) ; B is the one for vascular 
plants, $2=24. 2 log {l+x/(1.4x104)}. C denotes the compound 
curve of A and B, S-=SI+S2; D is the parabola fitted by 
KILBURN, S=16X o.a3. 

vascular plants and for that of bryophytes and lichens separately, because they are 

apparently of different synusiae each having different ,~ and E :  As the original data 

did not present these groups separately except for the area of 900m ~, the individual 

curves were fitted by eye through the points of 69 species for the vascular plants and 

21 species for the bryophytes and the lichens at 900m ~. Namely, the tangent to the 

observed curve through the point S=21 and logx=6.954 (x=900• 2) was drawn 

by eye. The slope of the tangent gave ,h=3.7 (against the common logarithm of 

area), and the intersection of the tangent and the abscissa gave E1~-17. Next, by 

subtracting the values of $1=3.7 log (1+~7) from the observed number of species, 

,~2=24.2 (against the common logarithm of area) was found from the slope of the 

linear part of t h e  remained curve, and E2~1.4• from the intersection of the 

backward projection of the linear part and the abscissa. The compound curve of them 

(S~+S~) was then compared with the actual plots. As will be seen in Fig. l, the 

theoretical curve is in good agreement with the observed values. If it is possible to 

split the synusiae more minutely, the result will be improved further. 

Other examples of the species-area relation compared with the theoretical curve 

are given in Fig. 2 in which the data by HOPKINS (1955)are used. It should be 

noticed that these plant communities are assumed to comprise a t  least two or three 

synusiae. The curves expected for the individual synusiae were fitted by eye because 
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Fig. 2. Species-area relations for plant communities (Data from HoPxi•s, 
1955). A :  Wrynose grassland, B :  Hillock wood, C :  Mayo bog and 
D :  Rannoch wood. The broken lines show the individual curves for a 
single synusia, and the thick solid lines show the curves compounded them. 
A and D are assumed to comprise three synusiae, and B and C two synusiae. 

it was impossible to point out which species belongs to which synusJa. The  method 

of finding the value of parameters  is virtually the same as stated in the case of 

Wisconsin jack pine stand. In this case, however, no data were given for each 

synusia, so that  each value of the parameters  was chosen by successive approximation 

so as to give the least number of synusiae. In Fig. 2 it will again be seen that every 

compound curve indicates goodness of fit in the whole extent of the area sampled. 

ECOLOGICAL IMPLICATION OF THE PARAMETERS 

The  species-area relation for j groups of species, each having different values of 

~l and E, can be writ ten as 
J 

S =  3-I. ,~+ln (l+x/E+) (7) 
i=1 

where i = l ,  2, 3 . . . .  j. This expression has already been given by ANSCOMBE (1950).  
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Then  the index of d ivers i ty  proposed by WILLIAMS (1943) will be approx ima ted  by 
J 

a =  2 J ~  
i-1 

in la rger  area,  because 1 is negligible as compared  wi th  x /E  if x is large,  so tha i  

S ~ X ,~,ln (x/E,) = (220  l n x - ~  v ( M n E , ) ,  

while the equation (6) can be wr i t t en  as 

S ~ a In  (Ox/a) = a l n x - a l n  (a/p) 
if x is large.  

Since 2 means the number  of species occurr ing in its charac ter i s t ic  area  ( e - 1 ) E ,  

the  value of 2 is independent  of sample  size. As  is expected theoret ical ly ,  the more  

species an area  contains,  the la rger  the value of 2 becomes. Thus ,  as the value of 

2 shif ts  f rom zero to infinity wi th  increasing species richness,  it wil l  be a valid 

measure  of species divers i ty .  We  will call it specific diversity. An advantage  in its 

pract ical  use may  be that  its theoret ical  impl icat ion is so obvious tha t  it can be used 

as an analyt ica l  tool per se in the s tudy of biotic communit ies .  

Another  pa rame te r  E per ta in ing to the equation (5) indicates the area  given by 

intersect ion of the  abscissa  and the backward  project ion of l inear par t  of the curve as 

pointed out by HOPKINS (1955). Since its value decides the  posit ion shif t ing f rom 

the first gent le  slope to the next  s teep in the curve wi th  expanding area,  E may  be 

considered a pa rame te r  charac ter iz ing  fac to r ( s )  tha t  control  spat ia l  segregat ion  of 

species in smal le r  area,  while 2 mainly  controls  slope of the curve in la rger  area. 

The  factors  that  affect the  value of E may  be enumerated  as follows : 

(1) The  value of 2 :  If the mean number  of individuals  in a unit a rea  is #, the  

fol lowing relat ion a lways  holds 

2<~p(e-1)  E, 

because the  number  of species in a given area  does not exceed the number  of 

individuals  in the area. T h a t  is, E depends on 2 if p is constant .  

(2) The  densi ty  of individuals:  As  is shown by the above equation, E depends on 

p if 2 is constant.  

(3) T h e  size of individuals  : If each individual is so large  in size tha t  it occupies 

a wide area,  p becomes small .  There fore  E depends on the size of individuals.  

(4) The  degree of aggrega t ion  in the  individuals of each species : Provided tha t  

the  individuals  of i th  species are  d is t r ibuted  fol lowing a negat ive  binomial ,  the  

f requency at  the  area  ( e - 1 ) E  is wr i t t en  as 

F ~ = I -  { l + m  ( e - l )  E/k~} -k~ 
where  k, is a constant  reflecting the degree  of aggregat ion .  Since Jl is the  sum of F,  

for  all the species which may  occur in a habi ta t ,  E depends on ks if 2 and p, is 

constant .  

(5) The  interspecfic associa t ion"  If each species is d i s t r ibu ted  separa te ly  f rom 

the others,  i .e.,  thei r  individuals  are  d is t r ibuted  in c lumps or in interspecific ter r i tor ies ,  

we would not encounter  another  species until  we cover the c lump or the te r r i tory .  
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Tha t  is, E would become large.  On the cont rary ,  if the individuals of every species 

are  ubiqui tously  d is t r ibuted  in a hab i ta t  each being mingled with  other  species, we 

would encounter  another  species a lmost  at  every individual.  Tha t  is, E would be 

small .  

As  E thus  depends on the size of individual  and the ecology of species, we may  

regard  it as an index charac ter iz ing  a "synusia" which has been t e rmed  a group of 

species consis t ing of one or few closely related life forms occurr ing toge ther  and 

having a s imi la r  ecology (CAIN and CASTRO, 1959). Fo r  example ,  such smal l  p lants  

as mosses and lichens will  show smal le r  value of E, while such large  plants  as t rees  

and shrubs  will  show la rger  value. I t  may  therefore  be said tha t  the equation (5) 

holds only among the species belonging to a synusia.  POORE (1962) has correc t ly  

pointed out tha t  the descr ipt ion of phytocoenose ( = p l a n t  communi ty )  should be made 

in t e rms  of its synusiae  and these should be sampled  separate ly ,  because each synusia  

has different pa rame te r s  reflecting their  ecology. 

In this  context ,  if the  spat ia l  s t ruc tu re  of a synusia  can be regarded as a mosaic 

whose component  pieces (so to speak,  patches)  are  each occupied by a species, the  

value of E m a y  reflect the  size of  component  patches  in the  mosaic  s t ruc tu re  of 

synusia  : If the  size of patches is l a rge  the  const i tuent  species will  be segregated  

f rom one another  and this  resul ts  in long continuation of first  gentle  slope in the 

species-log area  curve,  while  if it is small  they will  be less segrega ted  f rom one 

another  and this  resul ts  in quick rise of the  curve.  As E is thus  re la ted to the  size 

of component  patches  in a mosaic,  it will be named the elemental area. HOPKINS 

(1955) has  sugges ted  tha t  the  value of E (~/N in his t e rm)  may  be regarded as an 

object ively defined area  of a plant  communi ty ,  but  has encountered a difficulty in 

in terpre t ing  its ecological significance. This  difficulty may  be due to the appl ica t ion  

of a single logar i thmic  equation to a communi ty  which includes two or more  synusiae.  

In an elemental  area  E, the expected number  of species (S~) is given by ,t l n 2 .  

Then  if 2 is la rger  than 1 / l n 2 = 1 . 4 4 3  ( tha t  is, the area  is r ich in s p e c i e s ) S ~  is 

la rger  than unity. Th is  may  imply  tha t  we encounter  more  than one species wi th in  

the elemental  area, and tha t  the patches  of different species are  pa r t ly  over lapped one 

another.  Conversely,  if ~ is smal ler  than 1 / l n  2 ( that  is, the  area  is poor in species)  

S~ is smal le r  than unity. This  may  imply  that  we will  have to cover more  than the 

elemental  a rea  in order to encounter  one species, and tha t  the area  of gap where  

plant  (or a n i m a l ) i s  absent  is l a rge  compared  wi th  the  area  of pa tch  where  it is 

present.  T h e  former  case may b e  seen in a t ree layer  in which the canopies of each 

t ree  a re  more  or less mingled wi th  one another  when they are  d i s t r ibu ted  wi thout  

gap.  The  la t te r  case may  be seen in a ground surface layer  in which smal l  plants  

a re  sca t tered  sparsely.  

In this  connection, the  area  required to encounter  one species on an average  (hE) 

may  be regarded as the  mean size of patches.  Th is  is closely related to the  "mean 



271 

area" (not of a species but  of a synusia)  defined as the reciprocal of density by 

KYMN (1926), because occurrence of one individual corresponds to that of one species. 

With  the value of hE we may roughly assess the number  of individuals in a given 

area. 

The  value of /r is as follows : If S = I ,  the equation (5) becomes 

1=), In  ( l + x / E )  

or x= (e'/~--l)E, 

so that  h = e l / ~ - l .  (8) 

The case where h = l  ( v i z . , ) , = 1 / l n 2 )  may be regarded as a s tandard of species 

diversity, since in this case the values of hE and E are equivalent,  and doubling the 

area adds one new species to the total in larger area. Hereafter hE will be refered 

to as the specific area. Furthermore ,  if we use the number  of individuals ( N )  pooled 

all species instead of the area (x), it follows 

S ~ 2 In  ( l + h N ) ,  (9) 

since x / ( h E )  ~ N. 

This  equation shows a model for the species-individual relation. 

These parameters  of the synusiae in several plant communit ies  shown in Fig. 2 

are tabulated in Table  1 (for the method of finding these values, see p. 267). For  the 

lowest synusia of Rannoch wood, the values of E, hE and C were exceedingly small 

( E = 1 . 0 •  -2', h E = 4 . 9 x l 0  -'4 and C = l .  Tzl0-2~cm).  This  is due to the fact that  

the ground flora was so luxur ian t  that  2.4 species occurred even in the area of l m m  z 

(HOPKINS, 1955). Judging from the result  that  the value of 2 in this synusia approximates  

zero, the species belonging to the synusia  (two species of Vaccinium and two species 

Community 

Table 1. Parameters for the plant communities 
(Data from HOPKINS, 1955). 

Specific Elemental Specific Characteristic 
diversity area area area 

2 Ecm ~ hEcm ~ Ccm ~ 

Mayo bog 
O. 35 1. OXlO -3 1.7X10 -2 1 .7•  -3 

4. 13 3. 2x lO 2 8.8X10 5.4XlO 2 

Hillock wood O. 09 1. Ox 10 -8 1.5x10 -6 1.7x10 -g 

5.22 4. 0 x 104 8. 5 X 102 6.8 x 104 

Wrynose 
grassland 

O. 30 2.0 x 10 -~ 5.2 x 10 -~ 3.4 x 10 -3 

2.22 5.8 3.3 9.8 

4. 13 2.3• 6.3• ~ 3. 9X104 

Rannoch wood 

O. 04 * , , 

1.00 1.1X10 1.9X10 1.9X10 

5.57 4.4x104 8. 7XlO 3 7. 5XlO 4 

h~e'/~-l,  C= @-1) E. 
* For this synusia, see text. 
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of Bryophyta) may be exceptional in their coverage. 

Although these synusiae were temporarily discriminated in each community, it 

should be pointed out that 2 increases with the increase of E. This relation appears 

to be quite clear and is of interest with regard to the species diversity, but it may 

be safe to refrain from further comment on this relation since the information is not 

sufficient to confirm whether or not these individual values represent true synusia. 

THE CHARACTERISTIC AREA OF A SYNUSIA 

It may also be worth while examining the concept of "minimal area" or "repre- 

sentative area". According to HOPKINS (1957) the minimal area has been defined as 

the area above which the species-area or the constancy-area curve becomes approxima- 

tely horizontal (constancy means the number of "constants" being defined as species 

which have a frequency larger than 90 per cent). Complying with this definition, 

PRESTON (1962) has concluded that the locus of break in a species-area curve is given 

by the point of maximum curvature, and has demonstrated this point for the parabolic 

species-area curve. However, since most of the observed curve can not be expressed 

by such simple form as parabola, the difficulty with this is that it is almost impossible 

to determine mathematically the point of maximum curvature. 

Thus the minimal area defined from the form of species-area curve seems not to 

be worth mentioning. Apart from the minimal or the representative area, it may be 

possible to define another area which is characteristic of a biotic community : In the 

previous paper (KoBAYASHI, 1974), the characteristic area C was defined based on 

the idea that the species-area relation is expressed by a simple mathematical equation 

when a certain area is chosen as a unit size of sampling. That is, if the size of 

sampling unit is equal to C, the number of species (S,,) occurring in n samples is 

given by 

S,,=2 2(1/n) (10) 

1 where 2" ( l /n)  shows an abbreviation for r~]=l r '  and when the size of sampling unit 

differs slightly from C, the relation between S,, and n is approximated by 

S,,=u+v 2~ ( l /n)  (11) 

where u and v are constants. 

According to this consideration, when the number of species occurring in the area 

nx ( n = l ,  2, 3 . . . )  satisfies the equation (10), the area x should be equal to C. To 

find this value of x, we set up an equation 

),2 (1/n)-~A In (l+nx/E). 
Since 2 is the number of species at n = l ,  that is, 2 = A  In (1+x/E), the above equation 

can be rewritten as 

ln( l+nx/E)  
2, ( l /n)  - ln(1 +x/E) (12) 

Then the value of x satisfying the equation (12) will give the characteristic area. 
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Fig. 3. Relation between In (l+nx/E)/ln(l+x/E) and x expressed in terms 
of E at n=2, 5, 10 and 20. The open circle on each curve shows the 
value of Lr(1/n), and the broken vertical line shows x---(e--1)E. 

In Fig.  3 the  values of r ight-hand side of the equation (12) are  plot ted agains t  different 

value of x in t e rms  of the elemental  a rea  ( E )  at  n ~ 2 ,  5, 10 and 20. Al though  the 

value of x sa t is fying the equation (12) increases s l ight ly  wi th  the increase of n as 

will  be seen f rom Fig.  3, it is l ikely to show nearly  the same value. If we ass ign 

( e - 1 ) E  to an app rox ima te  value of x sa t i s fy ing the equat ion (12), it fol lows tha t  

In  ( l + n x / E )  
In  (1+x/E) =ln{l+n(e-1)},  

which gives the  fa i r ly  good approx ima t ion  of Z ( 1 / n )  at  any value of n ( the difference 

between X(1/n)and l n { l + n ( e - 1 ) }  shows the m a x i m u m ,  r - l n ( e - 1 ) ~ 0 .  036, at  n = o o  

where  r is EULER'S constant) .  F rom this it may  be said that  the charac te r i s t i c  a rea  

C is app rox ima ted  by (e-1)E. In this  a rea  C the value of specific dens i ty  is equal 

to 2 because S = 2  lne.  

The  values of ( e - l )  E calculated ten ta t ive ly  for p lant  communi t ies  are  exemplified 

in the r ight -hand column of Tab le  1. Since the charac te r i s t ic  area  defined as C - - ( e - 1 ) E  

depends only on the pa rame te r  of synusia  and denotes the  size of sampl ing  unit 

only wi th  which the probabi l i ty  of encounter ing new species in n th  sample  is reflected 

by  the number  of samples  (n) ,  it can also be regarded as an intr insic  p rope r ty  of 

synusia.  I t  may  then be concluded tha t  the equation (10) or ( 1 1 ) f o r  the discrete  
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sampling is also valid only for a single synusia. 

RELATIONSHIP BETWEEN DISCRETE SAMPLING 

AND CONTINUOUS SAMPLING 

GOODALL (1952) has stated that it is hopeless to find means of converting results 

obtained by discrete sampling to those which would have been obtained from continuous 

sampling. As has been mentioned, however, the equation (10) can be regarded as a 

special case of the equation (5). This suggests the possibility of conversion from one 

to another if the result by the discrete sampIing does represent the spatial distribution 

of individuals in each species as it is. Since the equation (5) provides the number 

of species occurring in any size of quadrat, it will be possible to predict the result 

which will be obtained by combining discrete samples at any level of quadrat size. 

Conversely, the data obtained by discrete sampling will be applicable to the equation 

(5) only on the assumption that the distribution of individuals in each sample reflects 

the true spatial distribution of them. 
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Fig. 4. Relation between the number of species (S/e) and the value of 
~v(1/n) at different sizes of sampling unit in a hypothetical synusia 
having 2=10 and E=l/(e-1). The numerals in the figure show the 
size of sampling unit. 

Fig. 4 shows the relation between S~, and n for the discrete samples taken from 

a hypothetical synusia which follows the equation (5) with the parameters 2=10 and 

E=l/(e-1). As will be seen from this figure, if the quadrat size is equal to the 

characteristic area C = I ,  the relation of Sn to X(1/n) is linear and fits the equation 

(10); while if the quadrat size deviates from C, the relation of Sn to -Y(1/n) is 

curvilinear and fits approximately the equation (11) for larger n. 



275 

Since the equation (11) is thus regarded as an approximate  expression in the case 

where the size of sampling unit deviates f rom C, we may instead use the equation 

(5) substi tut ing the continuous quanti ty (x) for the discrete (n), assuming that  the 

spatial distribution of individuals in each species was not distorted by the discrete 

sampling. 

Fig. 5A shows the result of fitting the equation (5) to the data of tall-grass 

prairie (RIc~ and KELTING, 1955) which has been illustrated in Fig. 4 of the previous 

paper (KoBAYASHI, 1974). Since the data were taken by the use of 100 quadrats  of 

1000cm ~, we can easiIy substi tute x for n. The  fitted equation is 

S = 1 3 . 7  l n ( l + x / 3 1 7 2 )  

=31 .5  log (1+x/3172) 

50 

4 0  

3 0  

2 0  

I 0  

0 

A 

o o 

i I I 
co 
LI..I 

I.U 
O_ 
CO 

2 5 4 5 

L O G  A R E A  ( c m  2) 

4 0  

B 
50 o CD 

2O 

I0  

0 ~ X 
0 I 2 

LOG X 

Fig. 5. Fitness of the equatian (5) to the data obtained by discrete 
sampling. A :  plants in a tall-grass prairie (some observed plots 
above 104 cm 2 are omitted in the figure), B :  arthropods in a 
grassland (open circles) and those in a potato field (solid circles). 
For further explanation see text. 
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where the values of constants were obtained from 2=13.7 and C=5450cm 2 (cf. 

KOBAYASHI, 1974, p. 234). 

The equation (5) is applicable also to the data taken by the use of utterly discrete 

sampling unit. Fig. 5B shows fitness of the equation (5) to the data of arthropods 

collected by sweeping in a grassland (MoToMURA, 1935) and those counted on potato 

plants (KoBAYASm, unpublished) (cf. Fig. 2 of KOBAYASm, 1974). As the size of 

sampling unit was a pool of 20 sweeps in the former and one plant in the latter, x 

was temporarily assumed to be 100n. The fitted equations are as follows : 

Arthropods in grassland : S=22.3  log (1+x/41.7),  

Arthropods in potato field : S = 7 . 6  log (1+x/17.8).  

The values of constants in these equations were found by the same method as given 

in p. 267. Their characteristic area, C=71.7 for the arthropods in grassland and C=30.6 

for those in potato field, indicates that if the size of sampling unit reduces to 71.7 per 

cent (viz., a pool of 14.3 sweeps) in the former and to 30.6 per cent in the latter, 

the equation (10) will hold in both data. 

DISCUSSION 

The sampling unit has hitherto been defined in different ways in addition to area. 

As for animal communities, the number of individuals or the time of trapping was 

more general than area. Using this measurement of sample size, WILLIAMS (1943) 
has developed his law of collection enrichment that doubling the number of insects 

caught (and hence the time of trapping) at any level, except for very small sample, 

always adds approximately constant number of species to the total. This implies 

that the number of species in collection increases linearly with the logarithm of the 

time of collecting. MOTOMURA (1935) has already described this law using the 

sweeping record of arthropods, and has pointed out that it was restatement of 

ROMELL's (1925) equation. 

ROMELL'S (1925) or GLEASON's (1922) equation for the species-area relation was 

S=b+alogx (13) 

where a and b are constants. If we let n be equal to infinity the equation (11) 

approaches to the equation (13) which has a=2.  3v and b-u+v 7, because 

lira {Z(1/n) - Inn}  = r  

where r is EULER'S constant. The equation (5) or (6) approaches to the equation 

(13) for larger area because 1 is negligible compared with x/E or px/~ as suggested 

by WILLIAMS (1943) and HOPKINS (1955). 

Applicability of the equation (13) for larger area has fully been demonstrated by 

EVANS et al. (1955). They showed that the total number of vascular plant species 

present in an area of 54,000 square yards can satisfactorily be predicted from a set 

of square yard samples placed at random in the area. 

Another idea that the species-area relation is not logarithmic but parabolic has 
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been put forward (ARRHENIUS, 1921 ; PRESTON, 1960 and 1962 ; KILBURN, 1963 and 

1966). According to this idea, the fitted equation is 

S = kx* (14) 

where k and z are constants. KILBURN (1966) has pointed out, however, that in 

most cases actual plots for larger area fall below the parabola. The equation (14) 

is probably an approximation for smaller area. 

The other maintenance that the species-area curve is sigmoid may still be worth 

examining. In his first paper, PRESTON (1948) has suggested that WILLIAMS'S law 

of collection enrichment is an approximation of the integrated curve of lognormal. 

This is nothing but an acceptance of the sigmoid species--log area curve. Similarly, 

BRIAN (1953) has proposed an alternative equation for the relation between the number 

of species (S) and that of individuals (px) in area x based on the negative binomial 

series : 

S = T{1-  (1 + px/k  T)-~} (15) 

where T denotes the limit of S as x increases and k a constant reflecting species 

richness. This equation also shows a sigmoid curve. 

A simpler model for an imaginary condition that the individuals of each species 

are distributed at random with the same abundance has been proposed by KYLIN 

(1926): His equation was 

S =  T ( 1 - e  -'~') (16) 

where m is the number of individuals per unit area per species and T the same as 

in the equation (15). This equation is the form obtained by putting k to infinity in 

the equation (15). 

An essential difference of the sigmoid curve from others may be the existence of 

asymptote or the delimitation of universe. Although GOODALL (1952) said that this 

argument carries little weight since the area is also limited, it may be a matter for 

argument whether the number of species increases steadily or retards to increase as 

the area expands logarithmically. In this regard, HAIRSTON (1959) has suggested 

that owing to the strong clumping of rare species, with increased sampling new rare 

species are more likely to be added to the total than are additional specimens of rare 

species already recorded. The contagiousness in the spatial distribution of rare species 

may thus prevent the species-log area curve being sigmoid. 

SHINOZAKI (1959) has considered that in the case where a community of homo- 

geneous pattern expands so largely that the flora or fauna is exhausted, the sigmoid 

species-log area curve (the closed type in his term) will be observed. According to 

him, if survey is ceased at intermediate area within a closed type community, the 

parabolic or logarithmic curve (the open type) will be obtained. This might imply 

that most of the species-log area curves become sigmoid if sufficiently large area is 

surveyed. However, if a habitat is prevented from immigrating or invading by the 

species whose populations are originally centered in other habitats, the closed type 
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community will be fOund. In view of the community continuum (see CURTIS, 1955; 

WHITTAKER, 1952 and 1956) it may be reasonable to regard our data as a fragment 

of the continuum, so that the chance of encountering newcomers will never be 

exhausted even in fully large area. Perhaps this is acceptable explanation for the 

open type curve, and may be supported by the fact that some of the closed type 

species-log area curve ceases to be sigmoid when sampling area expands further 

~ARcHIBALD, 1949b; HOPKINS, 1955). 

There is another matter  to be noted. The uniformity of specific density may be 

in favor of the suggestion that homogeneous habitats are nearly saturated with species 

(MAcARTHUR, 1965). According to the present model, once the values of 2 and E 

are assigned, the number of species can be predicted by area. On the other hand, in 

remote islands which have not been saturated with species because of the difficulties 

in immigrat ing or invading, the number of species is likely to be regulated by other 

factors than area (HAMILTON et al., 1963). In so far as homogeneous and unisolated 

habitat  is concerned, therefore, the equation (5) may reflect the capacity of habitat  

for sustaining species at a given area. 

The  area is somewhat different measure from other importance value of species 

such as the number of individuals, biomass and productivity. It should be noticed 

that in the species-area relation the criterion is merely presence or absence of species. 

For this reason we may get a consistent result, whereas the species-abundance 

relation is of varied forms and lacks neatness as suggested by WHITTAKER (1965). 

Fur ther  investigation on the relative abundance of species is necessary. 

SUMMARY 

A second mathematical model describing the species-area relation was proposed 

for continuous expanding of sample area. This model is expressed as 

S = 2  In ( I + x / E )  

where S is the number of species occurring in an area x, and 2 and E are the 

constants termed specific diversity and elemental area respectively. As a result of 

testing the validity of the model for several sets of data, it was shown that the above 

equation would provide an adequate fit to a group of species belonging to a single 

synusia which exists in an open habitat. 

The ecological implications of parameters involved were discussed and the chara- 

cteristic area presented previously (KoBAYASHI, 1974) was defined in terms of E. 

The relation between results obtained by discrete sampling and continuous sampling 

was examined and the possibility of converting one to another was suggested. 
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