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POSTULATES AND THEORY 

Introduction 

In an earlier paper (Preston 1948) we found 
that, in a sufficiently large aggregation of indi-
viduals of many species, the individuals often 
tended to be distributed among the species accord-
ing to a lognormal law. 'vVe plotted as abscissa 
equal increments in the logarithms of the number 
of individuals representing a species, and as ordi-
nate the number of species falling into each of 
these increments. We found it convenient to use 
as such increments the "octave," that is the in-
terval in which representation doubled, so that 
our abscissae became simply a scale of "octaves," 
but this choice of unit is arbitrary. Whatever 
logarithmic unit is used, the graph tended to take 
the form of a normal or Gaussian curve, so that 
the distribution was "lognormal." \Ve called this 
the ''Species Curve." 

In the present paper we take up a point merely 
mentioned in 1948 that not only is the distribution 
lognormal, but the constants or parameters seem 
to be restricted in a peculiar way. They are not 
fixed, but they are interlocked. The nature of 
this restriction and interlocking is the main theme 
of the present paper. 

In the earlier paper we graduated the experi-
mental results with curves of the form 

(I) 

where y is the number of species falling into the 
Rth "octave" to the right or left of the mode, Yo 
is the number in the modal octave, and a was 
treated as an arbitrary constant, to be found from 
the experimental evidence. This constant is re-
lated to the logarithmic standard deviation CJ by 
the formula 

a2 = Y2<l (2) 

and we noted that it had a pronounced tendency 
to come out at a figure not far from 0.2, so that CJ 

would have a value of about 3.5 octaves, and, since 
there are 3.3 octaves to an "order of magnitude," 
CJ would be a little more than an order of magni-
tude. 

If we now make a 2nd graph in which, using 
the same abscissae, we plot as ordinate not the 
number of species (y) that fall in each interval 
but the number of individuals which those y spe-
cies comprise. we get another lognormal curve 
with the same standard deviation as the first 
graph, but with its mode or peak displaced to the 
right. This we call the "Individuals Curve." 

Though we can use a Gaussian curve to "grad-
uate" the observed points of the species curve, the 
curve extends infinitely far to left and right, while 
the number of observed points is necessarily finite. 
This is a common situation in statistical work and 
usually causes no complications, but in our prob-
lem there results an additional piece of informa-
tion. The Individuals Curve necessarily lacks at 
least part of the descending limb. It terminates 
over the last observed point of the Species Curve, 
and this is long before the Individuals Curve be-
gins to become asymptotic to the horizontal axis. 
In the earlier paper we noted that, as a matter of 
observation, it seems to terminate at its crest, so 
that, in effect, only half of the curve is present. 

What I failed to observe in 1948 was that when 
the Individuals Curve terminates at its crest or 
very close to it, the value of "a" in equation ( 1) 
and of the standard deviation "rr," is fixed within 
narrow limits, and this value is in fact the one 
actually observed. This does not mean that "a" 
is a true constant, but only that it is not inde-
pendent of Yo or of the total number of species, N. 
It may be said that "a" is a function of Yo. so that 
given one, the other is settled. Thus we are re-
duced from 2 seemingly disposable parameters or 
constants to one. More generally, given any 
one piece of information about our collection, for 
instance given either the total number of species 
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or the total number of individuals, everything else 
is fixed. 

The word "Canonical" 
I have ventured to call such an equation 

"canonical." It appears likely that this term was 
introduced into mathematical physics by J. Wil-
lard Gibbs : I quote from the preface to Volume 
2 of his Collected Works ( 1931) : "We return to 
the consideration of statistical equilibrium . . . 
we consider especially ensembles of systems in 
which the logarithm of probability of phase is a 
linear function of the energy. This distribution, 
on account of its unique importance in the theory 
of statistical equilibrium, I have ventured to call 
canonical" (italics his) . 

By a sort of rough analogy, I have designated 
as "canonical," for ecological purposes, that par-
ticular lognormal distribution of the abundances 
of the various species (or genera, families, etc.) 
whose "Individuals Curve" terminates at its crest. 
This way of describing it is probably imperfect, 
and, as shown later, it apparently corresponds to 
a situation in space or time where the individuals, 
or pairs, are distributed at random, not clumped 
on the one hand nor over-regularized on the 
other. Thus a better definition may be possible, 
and in that case preferable ; but, however defined, 
it is a distribution that seems to have special im-
portance in the general theory of ecological en-
sembles, and so I have ventured to call it "canon-
ical." 

In the present paper we trace the consequences 
of assuming the distribution canonical. We ex-
amine how nearly the experimental results fit the 
purely theoretical curves. These experimental re-
sults, though some of them involve "collections" 
having many millions of individuals, take us only 
as far as a few hundred species. We attempt 
to estimate what would happen if we had 
thousands or scores of thousands of species, where 
we have no actual counts of individuals but may 
sometimes be able to estimate them roughly, and 
we draw such other tentative conclusions as occur 
to us. 

As the scale of abscissae we may use octaves, 
which is equivalent to taking "logarithms to the 
base 2," as we did in 1948, or we may use "orders 
of magnitude" which is more convenient when 
dealing with very large numbers. This is equiva-
lent to taking logarithms to base 10 as James 
Fisher ( 1952) did. For theoretical purposes a 
scale of natural logarithms (i.e to base 2.718) 
would be most convenient. Williams (1953) 
found it convenient to work with logarithms to 
base 3. 

Consequences of assuming that the individuals 
curve terminates at its crest 

This matter may be stated briefly, anticipating 
the more detailed statement of the next heading, 
as follows : As shown in Preston ( 1948) the 
distance between the crests of the Species and 
Individuals Curves is In 2/(2a2 ) or (In 2)a2, 
where a is the logarithmic standard deviation in 
octaves. 

Though we describe our distribution as log-
normal, it actually is finite, and species and indi-
viduals are not found infinitely distant from the 
mode either to the right or the left. In industrial 
"quality control" work it is customary to say that 
not more than one specimen out of a thousand 
should be expected beyond the 3-sigma limit, but 
in none of the biological examples we have yet 
encountered do we have as many as a thousand 
species to work with. We should therefore expect 
the finite distribution to end short of the 3-sigma 
limit. In fact, with the number of species in our 
examples to date we should expect it to terminate 
at about 2.5 to 2.8 sigma. If we take the latter 
value, the assumption that the distributions termi-
nate where the Individuals Curve reaches its crest 
is equivalent to setting 
(In 2)a2 = 2.8a, or a = 4.0 octaves approximately. 

But this is just about what we find in our ob-
servations; it corresponds to an "a" value of 
0.175. 

Thus by an appeal to observation, but not by 
pure theory, we can reach the conclusion that 
very often the finite distribution does in fact end 
just about where the Individuals Curve reaches 
its crest. This seems to make it advisable to 
restate the matter more formally, in order to cover 
the complete range of possible values of the 
number of species involved. 

The Individuals Curve 

In the Species Curve each octave contains a 
certain number of species and each of these is 
represented by roughly the same number of 
individuals. Multiplying the one figure by the 
other gives the total number of individuals that 
have, in effect, been assigned to that octave. By 
making this computation for each octave we can 
construct the "Individuals Curve." This can be 
done for the observed points, but here we are 
concerned with its theoretical form. 

For the Species Curve we have, as in equation 
(1) above 

y = y oe-a2a2. 

Let the number of individuals per species, the 
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"representation" of the species, be n, at the modal 
octave. Then at the Rth octave from the mode it 
is n02R individuals per species, and the octave 
holds yn,ZR individuals, or: 

y (noYo)(2R e-a2a2J = (noYo)(cR In 2 e-a2a2J 

= noYo c(~) 2 e-a2(R-~) 2 
2a 2a2 

(3) 

This is a lognormal curve with the mode dis-

In 2 . h h placed by an amount -- octaves: 1t as t e same 
2a2 

dispersion constant as the Species Curve, and it 

has the modal height Yo = lloYo e{I;a2Y 
(See Figure 1.) 

Equations like ( 3) become somewhat simpler 
in appearance if we use "natural orders of mag-
nitude" in place of "octaves," i.e. if we use in-
tervals in which the frequency or abundance of a 
species increases in the ratio 2.718 instead of 2.0, 
and if we use a, the standard deviation in orders 
of magnitude, instead of the coefficient a. 

This method of working is convenient if we 
have available adequate tables of natural loga-
rithms, for then the observed frequencies are easily 

classified into their natural orders of magnitude. 
I think, however, that it will be more convenient 
if we continue, as we have begun, by using "oc-
taves," which do not depend on the availability 
of such tables, or on the alternative method of 
converting ordinary logarithms to natural ones. 

The effects of a finite number of species 

Referring to the Species Curve in Figure 1, we 
note that in theory this curve extends infinitely 
far both to left and to right, but the long "tails" 
are exceedingly close to the R axis as asymptote. 
The area under the curve, or the integral of the 
curve, represents the number of species we have 
accumulated, as we go from minus infinity to any 
given point. This area is at first so small that 
not until we are within about 9 octaves of the 
mode (for this particular case, where we have 
a total of 178 species) have we accumulated 
enough area to correspond to a single species. 
This is the beginning of the real, finite, distribu-
tion. As we continue to the right we accumulate 
species rapidly ; then we pass the mode and 
accumulate them increasingly slowly. Finally 
we reach a point some 9 octaves to the right of 
the mode where the remaining area is scarcely 
enough to hold one more species. In practice, 
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FIG. 1. The canonical distribution for an ensemble of 178 species. For this number of species, the coefficient 
a = 0.200 and the standard deviation a is 3.53 octaves for both "Species" and "Individuals" curves. The modal 
height of the species curve is y0 = 20 species. The ordinate scale for the individuals curve is arbitrary: see text 
for explanation. The intermodal distance is 8.68 octaves. The real part of each curve is drawn solid: the first 
(rarest) and last (commonest) species ought to lie at about this distance (8.68 octaves or 2.45 a) from the 
mode of the species curve, or perhaps a little, but only a little, more. 
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the finite distribution ends at, or near, this point. 
The numerical value of the integral between 

any specified limits can be found from published 
tables, but the integral itself cannot be expressed 
readily in analytical form, suitable for finding a 
general solution to our problems. Nor, if it 
could, would it define the end of the distribution 
with real precision; at best it can only give an 
idea of the most probable position of the end of 
the distribution. We have taken as the most 
probable position that point where the remaining 
area under the tail of the curve corresponds to 
half a species. This mean that there is a 1 :1 
chance that we have not quite reached the end or 
that we have just passed it. 

In Table I we have given, for various values of 

TABLE I. The parameters of the canonical ensemble 

N X a a Yo Rmas. r r• 1/m 
- - -- - ---------

100 ... 2.576 3. 72 0.190 10.7 9.58 765 5.8X10• 2.69X10• 
200 .. 2.807 4.05 0.175 19.7 11.4 2,720 7.40X!O• 3. 75X!07 
400 ... 3.024 4.36 0.162 36.6 13.2 9,410 8.85X107 4.82X10• 
800 ... 3.227 4.66 0.152 68.5 15.0 32,770 1.07XIO• 6.23XIO• 

1,000 ... 3.291 4.75 0.149 84.0 15.6 49,670 2.47X!09 1.47XJOIO 
2,000 ... 3.481 5.02 0.141 158.9 17.5 185,400 3.44X1010 2.16XIO" 
4,000 ... 3.662 5.28 0.134 302 19.3 645,500 4.17Xl011 2. 75X10" 
8,000 ... 3.836 5.54 0.128 576 21.2 2,409,000 5.80X10'2 4.02X101 3 

10,000 ... 3.891 5.61 0.126 711 21.8 3,651,000 1.33X1011 o.93x10" 
100,000 ... 4.418 6.38 0.111 6,130 28.2 2.88XIO• 8.29XIO'" 6.61XJ017 

1,000,000 .. 4.892 7.06 0.100 56,500 34.5 2.43X10'o 5.90X1020 5.21X10" 

(Note. In 2 = 0.69315 and the reciprocal of this is I. 443) a is to be ascertained 
by multiplying x by I. 443. 

Then a is to be ascertained by dividing 0. 707 by a. 
Then yo is to be ascertained from the formula Yo - 0. 3989 N/ a. 
R-• 18 to be ascertained by multiplying x by a. 
r=2Rma• 
I/m = 1.25 r• a 

the total number, N, of species involved, 
value of x, or Rmax/o} which makes 

1 IX ? N - 1 --= e-q 12 dq = ---
V27r -x N 

that 

(4) 

That is to say, we have left one species out of N 
to be divided between the two tails, to left of -x 
and to right of +x, or half a species per tail. The 
values are taken from Lowan (1942). 

It can be shown that this point is very nearly 
the same as would be obtained by setting y = 0.4 
(species per octave) in equation ( 1), which would 
give 

y = 0.4 = Yo e-(aR)2 or (aR)2 = In (2.5 Yo) (5) 

We now have to trace the consequences of 
assuming that the crest of the Individuals Curve 
coincides with the finite end of the Species Curve. 

Estimating the canonical constants 

We have seen that the distance between the 
1 Note that this defines x as the half-range in terms of 
the logarithmic standard deviation, a, as the unit. 

modes of the species and individuals curves is 
ln2) /2a2 = a2 ln2, and from Table I we have 
the values of Rma:x/u or "x." Equating the two 
we have 

Rmax = xa a2 In 2 or a x/ln 2 1.44 X (6) 

whence 

(7) 

Since we already have the values of x for various 
values of N, the total number of species, we are 
now in a position to add to Table I the values of 
a and of Rmax, and this has been done. Further, 
since a2 = 1/2a2 or a = 0.49/x, we can also add 
the value of a. Again, the number of species 
(Yo) in the modal octave of the Species Curve can 
also be computed, for 

N =Yo av21r 
so that 

Yo = 0.399 N/a = 0.277 Njx. (8) 

This value, also, is therefore added to Table I 
and this completes all the unknowns. Given the 
total number of species, the first column of Table 
I, we can ascertain all the constants of equation 
( 1). The basic equation of the distribution has 
therefore become canonical, in the sense that 
nothing is left to chance; once N is specified, 
everything is determined. 

The relation between total individuals and 
total species 

The canonical equation implies that there is a 
definite relationship between these 2 quantities, 
and if "m," as defined below, is known, it is easily 
calculated. When we permit ourselves the liberty 
of making this theoretical estimate, we can expect 
only rough agreement with it in practice in any 
particular instance. The actual termination of 
the Species Curve may be some distance from 
where our estimates place its "most probable" 
position and, as shown later, the crest of the Indi-
viduals Curve is not precisely at its termination 
if "contagion" is present. The computation how-
ever is worth making; it may lead to some under-
standing of the problem. 

We have denoted by no the number of indi-
viduals in the modal octave representing a single 
species. Let us denote by Rmax the "range," in 
octaves over which the finite distribution of spe-
cies extends to left or right of the mode of the 
Species Curve. In a complete "universe" or log-
normal curve, the range should be the same to 
left or right, though samples usually show a 
truncation at the left end. 
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The commonest species, located at +Rmax• ought 
to have 11o 2Rmax individuals. Similarly, the rarest, 
located at -Rma:r, ought to have n0 j2Rmax· If we 
denote the number 2Rmax by r, the commonest spe-
cies has ~~or individuals, and the rarest n0 jr. The 
ratio of the numbers of individuals of the com-
monest to those of the rarest is then r2• Since we 
know Rmax, approximately, we can add to Table I 
the values of r and of r2. 

Now the rarest species must include one indi-
vidual or one pair, and if we suppose the species 
to be viable, we probably must assume that it is 
somewhat more than this. We can call its num-
ber of individuals (or pairs), "m," for minimum, 
where m is probably a rather small number, 
without committing ourselves immediately to an 
estimate of m. Then the modal species will have 
mr individuals per species, and the commonest 
will have about mr2• In equation (3) we have 
denoted mr2 by the symbol Y 0 • 

The total number of Individuals in the whole 
ensemble is 

h I = Y2v; Yo/a = Y2v21r Yo a w ence __ 
1/m = Y2v21r r2 a = 1.25 r2 a (9) 

This value of 1/m, as a function of the total num-
ber of species N, is given in the last column of 
Table I. 

. ' .. 
..... ... .... 

N 

FIG. 2. The relation between the number of species 
(y0 ) in the modal octave and the total number of species 
(N) in the ensemble. The solid line is the computed 
relationship from equation 18, and is pure theory. The 
observed points are taken from Table II. 

In Figure 2 we have plotted Yo as a function of 
N, using "log-log" plotting. The curve is sub-
stantially a straight line. Observed points from 
earlier work, and from computations made on 
the estimates of Fisher and of Merikallio, are 

plotted at the lower end of the curve, which 
seems to lie reasonably well among them. 

Note that the line we have drawn is a purely 
theoretical one. It is not drawn to fit the ob-
served points which were added after the curve had 
been drawn. Unless the theory bore some rela-
tion to the facts we might very well find all the 
points to one side of the curve and not indicating 
much the same slope as that of the theoretical 
line. The fact that in position and in slope the 
theoretical line, at its lower end, lies close to 
where we should place an empirical line drawn 
among the points, is encouraging. 

In Figure 3 we plot the logarithmic standard 
deviation a and the coefficient "a," against N, 
using semi-logarithmic plotting. In Figure 4 we 
plot the value of Rmu:, or half-ranges against N. 
It appears that Rma:r is nearly a rectilinear func-
tion of log N. In Figure 5 we plot r, r2, and 1/m 
as functions of N, log-log plating. All 3 lines 
are nearly straight. 
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FIG. 3. The relation between the coefficient "a" in 
equation 7, or the standard deviation a, and the total 
number of species (N) in the ensemble. (Computed re-
lationship) 

.. .. 

J .. .. 
i" 
~ 10 
:1! 

.. 

H (• No. of Specin In thl EftHfllbltt) 

FIG. 4. Half-range (± Rmax> as a function of N, the 
total number of species. The "Range" is the number of 
octaves which the finite distribution may be expected to 
cover. 
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FIG. 5. The relation of r, r2, and 1/m to N. Here r 

is the value of 2 Rmu:, II m is the total number of indi-
viduals divided >by that minimum number of individuals 
(m) that may be assumed necessary to keep a species in 
existence, and N is the total number of species in the 
ensemble. 

The equations of these straight lines, as de-
termined by a least-squares fitting to the data 
of Table I are 

log r = 1.872log N - 0.875 (10) 
log r2 = 3.745 log N - 1.751 (11) 

log I/m = 3.821log N - 1.21 (12). 

These equations are, as we have seen, all inti-
mately connected, and if one has to be modified, 
all must. 

Note that these equations are only approxima-
tions, because the lines are not quite straight. 
Equations ( 10). and ( 11) are probably close 
enough for any purposes that I can foresee ; equa-
tion ( 12), particularly in its inverted form where 
it relates log N with log ( I/m), may usefully be 
modified slightly for different ranges of the value 
of N (See below, under "The Species-Area 
Curve."). 

The relation between I and N in a 
complete ensemble 

We have, in equation (12) a relation between 
I and N if we can make a reasonable estimate of 
the value of m. We have tentatively identified m 
as th(' number of individuals or pairs in the rarest 
species and, since species are all the time being 
exterminated, we may expect that m will be a 
number not far from unity. In practice we often 

find it so as shown below. But a full discussion of 
this would involve many biological considerations. 
For instance we find in practice that m is fre-
quently less, even appreciably less, than unity, and 
the temporary interpretation we have given then 
has ?o meaning. Another, related, meaning can 
be gtven to m but the simplest interpretation for 
the present is a purely mathematical one. Any 2 
of th~ 3 quantities N, y0 , and a (or "a"), define 
the stze and shape of the Species-Curve, but they 
do not define its position along the axis of x, i.e. 
of R. The quantity "m" specifies this position. 
It thus determines not merely the number of in-
dividuals theoretically representing the rarest 
spec~es, but also the number of individuals repre-
sentmg any of the other species, including the 
commonest. In consequence, the relation is really 
between (1/m) and N, not between I and N 
directly, but if we know, or can estimate, I and 
N, we can get an estimate of m . 

The Species-Area equation 

There is one other formula that may be useful 
to us. In some cases we may regard individuals 
(or pairs of birds), as being distributed uniformly, 
statistically speaking, over wide areas. Let the 
density of individuals (or pairs) be p per acre. 
Then the formula 

I=pA (13) 

gives the number of individuals or pairs to be ex-
pected on an area of A acres. 

We can substitute this in equation ( 12) and ob-
tain 

log N = 0.262 log (p A/m) + 0.316 (14) 
N = 2.07 (p/m) .o282 A .o282 (15) 

This is the Species-Area Equation under 
"ideal" conditions such that the area we consider 
is populated with a complete, not a truncated, 
lognormal ensemble, and that the density of the 
population ( p) does not change substantially over 
the range of areas we are considering. The first 
stipulation is important because in contiguous 
areas, for which Species-Area Curves are often 
propounded (and this includes my own companion 
paper on "Time and Space and the Variation of 
Species"), the smaller areas act much like 
"samples" of larger ones. 

If we are dealing with isolates that take the 
form of complete canonical ensembles, and if p 
and m are substantially unchanged from isolate to 
isolate, then equation ( 15) may be written. 

N ex Ao.282 (16) 

numbers 

numbers 
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and since, 0.262 is not far from 1/4, this may 
be written 

N ex vA approximately (17) 

which I have referred to as "the fourth-root law." 
This is useful for quick calculations. 

As a matter of fact, as mentioned earlier, the 
exponent 0.262 is an average index over the whole 
range shown in Fig. 5 or Table I. It was ob-
tained by comptuing a theoretical regression line 
from that table. Over the range for which we 
have some observational data, i.e. when the num-
ber of species is between 100 and 1000, the index 
as computed from theory is more nearly 0.270, 
and our equation becomes 

N = 1.83 (pjm)o.21o Ao.21o (18) 

At the present time, therefore, equation (18) is 
more useful in practice than ( 17), and this is 
graphed in Figure 6 for various values of p/m, 
and tabulated in Table II. 

.. 
FIG. 6. The Species Area Curve for Isolates (solid 

line) and for Samples (broken line). Here pis the areal 
density (e.g. number of birds per acre) and m is the 
minimum number of individuals assumed necessary to 
keep a species in existence. 

TABLE I I. Number of species to be expected on area 
(A) of different sizes when given the density (p) of 
individuals per unit area and the minimum number (m) 

of individuals needed to keep a species in existence 

A in acres 
P/m 10 10• 101 lOt 10• 101 107 101 108 1010 - - - - -- ----- --·---

I. ... 3.4 6.3 11.8 22 41 76 142 265 493 917 
2 .... 4.1 7.6 14.2 27 49 92 171 320 595 1107 
5 .••. 5.5 10.3 19.2 36 67 124 230 430 796 1490 

10 ..•• 6.3 11.8 22 41 76 142 265 492 917 1710 
100 .... 11.8 22 41 76 142 265 492 917 1710 3180 

1,000 ...• 22 41 76 142 265 492 917 1710 3180 5920 
10,000 .... 41 76 142 265 492 917 1710 3180 5920 IIXIO• 

100,000 ...• 76 142 265 492 917 1710 3180 5920 IIXI0 3 20.5XIO' 
1,000,000 .... 142 265 492 917 1710 3180 5920 11XI03 20.5X103 38.3XIO• 

In all probability, for the range from 50 to 200 
species, the index is slightly higher still, perhaps 
0.280. A number of our counts are within this 
range, and we have to consider them also when 
we deal with families rather than species. How-
ever the differences between 0.262 and 0.270 or 
even 0.280 are small compared with the uncer-
tainties of our experimental or observational in-
formation. When we are dealing with areas that 
are merely samples of larger areas the index will 
tend, except for very small samples, to fall well 
below 0.262. 

Fictive areas 
Not all areas of equal size are equal in carrying 

capacity. A thousand square miles of the Green-
land ice-cap are not equivalent to a thousand 
square miles of N eotropical forest, for instance. 
The treatment given above assumes that the areas 
we consider are reasonably comparable in fertility 
or, more generally, in "carrying capacity." The 
problems presented when this is not the case are 
discussed below where the concept of equivalent 
or "Fictive" areas is introduced. 

Theoretical Species-Area Curves 
(for complete lognormal ensembles) 

The equation is N = 1.83 (p/m)D.27D A0·27° or 
log N = 0.262 + 0.270 log (p/m) + 0.270 log A. 
Table II gives the values of N over the range 
10 < A < 1010, or 1 < log A < 10, and for 
p/m = 1, 2, 5, 10, 100, 1,000, 10,000, 100,000, 
and 1,000,000. In Fig. 6 we graph the entries of 
Table II. The solid curves ·are all alike, merely 
displaced to left or right. For comparison there 
are added the observed curves for N earctic and 
N eotropical birds, taken from the companion 
paper (Preston 1960). These 2 curves, in broken 
lines, represent the behavior of "samples," not of 
complete canonical ensembles, and their form is 
discussed later in the present paper. 

COMPARISON OF THEORY AND OBSERVATION, 

AND THE SPECIES-AREA CuRvE FOR IsoLATES 

In this section and the next we shall be dealing 
with the properties of isolated "universes" or iso-
lated "populations," hereinafter called simply 
"isolates," as contrasted with the properties of 
"samples." In general the isolate tends to give 
a distribution-curve that is symmetrical and looks 
like a fair approximation to a complete lognormal. 
On the other hand, if we have a "sample," which 
is a small fraction of an isolate and is a random 
sample thereof, the distribution tends to look 
like a truncated or decapitated lognormal, an un-
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symmetrical distribution, of which we showed 
examples in Preston ( 1948). 

We have shown above the mathematical conse-
quences of 2 assumptions; viz, that abundance is 
typically distributed lognormally among species, 
and that this distribtuion is Canonical in the sense 
that not all lognormals meet the requirement, but 
only those in which a definite relation exists 
between the number of species, ( N), the number 
of species in the modal octave (Yo), and the loga-
rithmic standard deviation (a) . We now consider 
what degree of confirmation or refutation is avail-
able from observation. 

The Canonical Parameters 

The relative constancy of a and ua" 
In any Gaussian distribution or, in our case, 

any lognormal distribution, we have from equa-
tion (8), 

N = v21r (Yo a) (19) 

That is, the total number of species in the "uni-
verse" is proportional to the product of the num-
ber of species in the modal octave and the loga-
rithmic standard deviation. As the number of 
species increases, Yo or a, or both, must increase. 
When the distribution is canonical both increase, 
but a increases only slowly while Yo increases 
rapidly. In fact if we double N, Yo increases by 
about 85%, but a by only 8% in the range of most 
interest to us. 

Similarly, since "a," the "modulus of pre-
cision," is related to a by the formula a2 = 
1/(2a2), "a" also is relatively constant. This is 
what we found in Preston (1948). 

The numerical values of "0:' and a 

Not only are these values relatively constant 
over the accessible range of values of N, but Table 
III shows that, in this range, where N averages 
perhaps two or three hundred species, "a" is about 
0.175 and a is about 4 octaves, or something like 
one and a fifth orders of magnitude. 

Now, referring to Table I, we see that for 314 
species we should theoretically have an average 
value of "a" of about 0.169. This agreement is 
close, perhaps fortuitously so (see below on con-
tagious distributions), but it warrants a few com-
ments. 

The only attempts to get a picture of the com-
plete ensemble . by direct observation are those of 
Fisher (1952) and Merikallio (1958). There 
are considerable difficulties with the experimental 
work and some uncertainties, some of which the 
authors have indicated. The other r·esults come 

TABLE II I. (Observed Relationships). N is the number 
of species estimated, on the basis of the sample, to be 
present in the total "universe" or "population": y0 is the 
number of species in the modal octave, and "a" is the 

"modulus of precision" of the lognormal distribution 

Instance N (estimated) Yo a Reference 

Saunders (birds). ....... 91 10 .194 Preston 1948 
Dirka (moths) ........... 410 48 .207 Preston 1948 
Dirka (female moths) ..... 363 42 .205 Preston 1948 
Williams (moths) ........ 273 35 .227 Preston 1948 
King (moths) ........... 277 33 .152 Preston 194R 
Seamans (moths) ........ 332 30 .160 Preston 1948 
Maryland birds .......... 233 28 .213 Preston 1957 
Nation-wide bird count ... 5:!0 38 .129 Preston 1958 
Nearctic estimate ........ 600 65 .19 Preston 1948 
Land Birds of England 

and Wales ........... 142 11.2 .14 Fisher 1952 
Breeding Birds of Finland. 204 16.5 .146 Merikallio 1958 

from estimates of what the "universe" is like as 
a result of studying a sample. Indeed neither 
Fisher nor Merikallio was studying a perfect 
"isolate," though they approximated it. The 
sample theoretically has the same modal height 
and the same dispersion as the universe, and it 
has also a 3rd variable, the position of the "Veil-
line," or what is the same thing in the end, the 
abscissa of the mode. This 3rd disposable vari-
able makes our estimates of the other 2 more 
uncertain than they would otherwise be, and 
therefore agreement in our estimate of "a" or a 
within about 6% seems in part fortuitous. For 
a discussion of the fitting of truncated Gaussian 
distributions see Hald ( 1952). Furthemore, when 
we are dealing with truncated ensembles, we do not 
directly observe the value of N, the total number 
of species, but have to estimate it from the sample. 
This throws a further strain upon the interpreta-
tion of our observations. 

The relation between Yo and N 

To the extent that we find the correct relation-
ship between a and N we must·necessarily find a 
correspondingly correct relationship between Yo 
and N but, since a is so nearly constant over the 
observable range of N while Yo varies rather rap-
idly, Yo may throw some further light on the 
matter. Table III gives the observed values of Yo 
for various values of N, most of which are esti-
mated from incomplete or truncated distributions: 
Figure 7 shows the data in graphical form. It 
should be once more emphasized that the line is 
purely theoretical. The small circles represent 
observed points from Table III. The line is not 
"fitted" to the points and then extrapolated; the 
line is from theory, the points from observation. 
But it will be observed that the line passes neatly 
among the observed points which lie in a narrow 
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band straddling the line so that if we did "fit" 
a line to the observations it would not be very 
different from the theoretical one. The observed 
points not only lie reasonably near the line, but 
they parallel its course. This gives us an addi-
tional point of agreement between theory and ob-
servation, beyond what we get from considering 
the relationship of a and N. 

The relation between N and I in a complete 
ensemble 

Here we exclude discussion of the relation be-
tween N and I in "samples." The best way to 
get complete ensembles is probably to deal with 
"isolates" such as the fauna and flora of islands 
which are in internal equilibrium, but not neces-
sarily in equilibrium with, or even appreciably 
affected by, the populations of other land masses. 
However, so far as I know, we have no counts 
of individuals for such islands, nor even good 
estimates of the numbers of individuals. For-
tunately when our areas become reasonably large, 
of the order perhaps of 50,000 to lOO,()(X) square 
miles, the distribution begins to approximate 
closely to that of a complete ensemble (in the case 
of birds) even though the area is in intimate 
contact with neighboring land areas. We have 
at least 2 fairly good estimates of the number 
of species and of individuals on such areas : James 
Fisher's ( 1952) estimate of the land birds of 
England and Wales, and Merikallio's (1958) 
estimate of the breeding birds of Finland. 

The land birds of England and Wales 

Fisher lists some 142 land birds as regular 
breeding species, and the distribution looks reason-
ably complete and symmetrical (see his Figure 
I). From our equation ( 12), we compute that 
I/m = 10,000,000 very closely. Fisher estimates 
that I is 63,000,000 individuals, hence m should 
be approximately 6 individuals or 3 pairs. This 
is, I think, a reasonable estimate of the number of 
pairs of the rarest regularly-breeding species. 

The value of r2 may be computed from formula 
( 11 ) and comes out very close to 2,000,000. Then 
mr2 = 6.3 X 2 X 106 = 12.6 million individuals. 
Fisher gives a value of 10 million approximately, 
so again the agreement is good. The value of r 
may he computed from formula ( 10) or taken as 
the square root of 2 million. Then we get mr = 
8,900 individuals per species in the modal octave. 
·Our computation from his data (which are not 
given in great detail) is 8,500. The agreement is 
almost too good. 

The breeding birds of Finland 

Merikallio ( 1958) lists about 204 species. On 
this basis we should expect I/m to be about 41 
million. Merikallio gives a value of I of 31 mil-
lion pairs, hence our computation suggests in this 
case that m is about one pair (0.76 pairs). We 
can also compute that r = 2,810, whence mr = 
2.1 X lOS for the modal species and mr2 = 6.0 X 
106 for the commonest. The figure Merikallio 
gives for his commonest species is 5.7 X 106 pairs, 
where once more the agreement is accidentally 
too good, and our computation from his figure 
gives the modal representation as 4.26 X 1()3, 
which is fair. 

The relation between N and A: the Species-Area 
Curve for complete Canonical ensembles 

In general there can be no complete count of 
individuals on areas large enough to approximate 
complete ensembles. Both Fisher and Merikallio 
use methods of estimating, not counting, indi-
viduals except for the rarest species. Their 
methods could of course be extended to other 
areas and other taxonomic groups and it might 
then be seen how nearly the theory fits the ob-
servations. 

We can however assume that in certain parts 
of the world we have isolates, or near-isolates, of 
some taxonomic groups on islands of different 
sizes between which there is very limited floral 
or faunal interchange, and that on each of these 
islands there may be a fair approximation to a 
canonical distribution. These islands ought to be 
numerous enough for us to strike a reasonably 
good statistical correlation; they should be sim-
ilar climatically and not too dissimilar in vegeta-
tion cover and soil. There are 2 obvious groups 
of such islands, the East Indies and the \Vest, and 
there are taxonomic groups such as land mammals, 
land reptiles, and amphibia that do not readily 
cross stretches of sea. Birds qualify partially, 
and are usually better known. Unfortunately, 
the number of species on the smaller islands is 
usually far below what we like for statistical 
work. Elsewhere (Preston 1957) I have sug-
gested that we ought to have something like 200 
species, and this is out of the question for the 
groups mentioned. We must accordingly do the 
best we can with smaller numbers. 

The mammals of the East Indies 

Darlington ( 1957, p. 480) discusses the mam-
mals of Sumatra, Borneo and Java. These islands 
are comparable in latitude and climate (a matter 
that cannot be neglected) and their areas are 
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given as 167,000: 290,000; and 49,000 square 
miles respectively, while their "units" of mam-
mals are 55, 47, and 33. "Units" in this case are 
a mixture of ·species and genera. Striking an 
average of the 2 larger islands gives us an 
imaginary island 228,000 mi2 and 51 species. 
Comparing this with the smaller island of Java by 
means of the formula 
z = log (NdN2)/log (Ad A2) (from eq. (18)) (20) 
where the suffix 1 applies to the one island and 
the suffix 2 to the other, we find that 

z = 0.28 
which is very close to what is called for by the 
theory of Equation (20). 

Amphibia and reptiles of the West Indies 

Darlington ( 1957, p. 483) in discussing the 
Anura and the lizards and snakes of Cuba, His-
paniola, Jamaica and Puerto Rico, with some 
support from the small islands of Montserrat and 
Saba in the Lesser Antilles, concludes that "di-
vision of area by ten divides the fauna by two." 
(The "herps" on 40,000 mi2 total about 80, and 
on 4,000 mi2 about 40.) Darlington's statement 
implies that 

z = log 2/log 10 = log 2 = 0.301 
which is quite close to the theoretical value of 
0.28. The smaller islands support Darlington's 
views, but since the number of species is very 
small, neither agreement nor disagreement would 
carry much weight. 

It may be noted that if we take frogs and toads 
alone, since the legitimacy of lumping these with 
lizards and snakes may be questioned, we have 
an average of 25 ~ species on the 2 larger islands, 
with an average of 35,000 mi2, and an average of 
140 species on the two smaller islands, with an 
average of 4000 mi2• The computation then gives 
z = 0.26, which is also the theoretical value. The 
reptiles (snakes and lizards combined) give a 
value of 0.318 ; the lizards alone give a value of 
0.294. The snakes are too few to be used safely 
for a caculation. 

Birds of the West Indies 

The populations of birds, particularly seafowl, 
on the various islands of the West Indies are 
probably somewhat less isolated from one another 
than the frogs and lizards. On the other hand 
there is quite likely not much gene-flow among a 
large proportion of the land-birds. The popula-
tions of each island may therefore approximate 

to canonical lognormals and the exponent z may 
be expected to approach 0.26-0.28, the theoretical 
value, or to be a little lower. 

Bond (1936 and 1956, with supplements) has 
given detailed accounts of these birds, from which 
I attempted to compile a list of the breeding 
species of all the major islands and a number of 
the smaller ones. The areas I took from the 
Encyclopedia Britannica, edition of 1949. In the 
case of a few species, while Bond leaves no doubt 
that they breed within the West Indies, there may 
be some uncertainty whether they breed regularly 
on some of the islands. This is probably un-
important in the case of the major islands, where 
the birds are probably better known, but I may 
be in error in connection with some of the smaller 
ones. In order to permit others to correct me, I 
give in Table IV a list of the islands I have used, 
their areas and my estimates of the numbers of 
breeding species of birds, and in Figure 7 I have 
graphed the results. Note that I have excluded 
introduced species. Note also that the Isle of 
Pines has an abnormally rich fauna for its size. 
This probably comes about from its not being an 
"isolate," but rather a "sample" of Cuba, prob-
ably a truncated distribution. 

The line is not a calculated regression line, but 

TABLE IV. Birds of the West Indies 

Island 

Cuba ........... . 
(Isle of Pines) . . . . . 
Hispaniola ....... . 
Jamaica ......... . 
Puerto Rico ..... . 
Bahamas ........ . 
Virgin Islands .... . 
Gua<!a~upe ....... . 
Dommrca ........ . 
St. Lucia ........ . 
St. Vincent ...... . 
Grenada ......... . 

a.s 

z 
§a.o 

1.5 

Area in Square Miles 

... 

43,000 
(11 ,000) 
47,000 
4,470 
3,435 
5,450 

465 
600 
304 
233 
150 
120 

s.s 

LOG (Area in - miles) 

Breeding Species 
of Birds 

124 
(89) 
106 
99 
79 

c74 
35 
37 
36 
35 
35 
29 

FrG. 7. Birds of the West Indies: Species-Area Curve. 
The abscissa gives the areas of the various islands; the 
ordinate is the total number of bird species breeding on 
each island. 
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is drawn "by eye" and seems reasonable ; it is 
scarcely worth more refinement in view of the 
errors I may have made in my estimates or the 
general question of how legitimate it may be to 
include seafowl in a study of "isolates." Its slope 
corresponds to z = 0.24, which seems to agree 
well with expectations. 

Birds of the East Indies 

The "East Indies" here includes 2 or 3 islands 
of the Sunda Shelf, and several other islands not 
strictly on the shelf or even part of the same 
zoogeographical province, and one island, Ceylon, 
far removed to the west. However, the islands 
are all essentially tropical and climatically not too 
dissimilar. I have depended heavily on informa-
tion supplied by Dr. Kenneth Parkes who has 
used, besides his own knowledge, the findings of 
Delacour and Mayr. The 1949 Edition of the 
Encyclopedia Britannica gives somewhat different 
counts of species. 

A list of the islands with their areas and breed-
ing species as given in Table V, and the results are 
graphed in Figure 8. The slope of the curve 
is z = 0.288, close to the theoretical value which 
in this case should be about 0.27. The curve 
is drawn "by eye," but seems likely to be as close 

TABLE V. Breeding birds of some East Indian islands 

Island 

New Guinea ..... . 
Borneo .......... . 
Phillipines (ex-

cluding Pal& wan) 
Celebes ......... . 
Java ............ . 
Ceylon .......... . 
P&l&wan ......... . 
Flores ........... . 
Timor ........... . 
Sumba .......... . 

z 

3.0 

Area in Square Miles 

312,000 
290,000 

144,000 
70,000 
48,000 
25,000 
4,500 
8,870 

300 X 60 = 18,000 
4,600 

4.0 5.0 
LOG I Area in Square Mile a I 

Breeding Species 
of Birds 

540 
420 

368 
220 
337 
232 
111 
143 
137 

108 (or 103) 

6.0 

Frc. 8. Birds of the East Indies : Species-Area Curve. 
The abscissa gives the areas of the various islands; the 
ordinate is the total number of bird species breeding on 
each island. 

as the observational evidence warrants. Good 
counts on some smaller islands might help but, in 
view of differences of opinion among taxonomists 
as to what constitutes a valid species, and in view 
also of the fact that with small islands statistical 
fluctuations or "errors" are likely to be important, 
I am not sure that much would be gained. 

It may be noted that Java is rich for its size, 
while Celebes is poor. Ceylon is relatively 
"rich," but it may be acting to some extent as a 
sample of India and thus be somewhat enriched. 
New Guinea is famous for its wealth of species 
but some fraction of these may be an enrichment 
from the Australian mainland. Mayr (1944) 
comments that Timor is poor in birds, being both 
peripheral and arid. 

The birds of Madagascar and the Comoro Islands 

Madagascar is one of the large islands of the 
world, with an area of 229,000 mi2. The Comoro 
Islands lie off its northeast coast, in the Mozambi-
que Channel, in Latitude 12°S. They are 4 small 
islands, averaging about 200 mi2 apiece, and 
have received their bird fauna predominantly from 
Madagascar (Benson 1960). Madagascar has ap-
parently been an isolated island since early 
Mesozoic (Triassic) times while the Comoros 
date back to the mid-Tertiary (Miocene) times. 
The 1949 edition of the Encylopedia Britannica 
gives about 260 species of birds for Madagascar. 
Rand ( 1936) gives his estimate as 237 breeding 
species. I have comprised on 250. Benson (1960, 
p. 18) gives the breeding bird tally as follows: on 
Grand Comoro ( 366 square miles), 35 species ; 
on Moheli ( 83 square miles), 34 species ; on 
Anjouan (178 square miles), 35 species; on May-
otte ( 170 square miles), 27 species. 

Madagascar is roughly a thousand times as 
large as the average Comoro Island and there are 
no islands of intermediate size in the immediate 
neighborhood. We can, however, make the as-
sumption that over the ages, many species of birds 
from Madagascar, Africa, and occasionally else-
where have made landfalls on the Comoros, and 
that the islands have as large a number of species 
as they can support. On that basis we can plot 
them on a graph along with the avifauna of 
Madagascar, and this has been done in Figure 9. 
The line has been drawn by eye, and its equation 
is 

N = 7.95 A0·28 

The exponent, 0.28, is very slightly above the 
theoretical value, and the coefficient, 7.95, only a 
little below the theoretical value of 10, appropriate 
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MADAGASCAR a THE COMORO ISLANDS ... 

... 
g 
...J 1.5 

•.. ... 
LOG A ( in square miles) 

FIG. 9. Birds of Madagascar and the Comoro Islands : 
Species-Area Curve. The abscissa gives the areas of the 
various islands ; the ordinate is the total number of 
bird species breeding on each island. 

when A is in square miles and p/m is assumed to 
be unity. 

The land vertebrates of islands in Lake Michigan 

Batt et al. ( 1948, p. 149) list 12 islands in Lake 
Michigan ranging in area from 2.5 acres to 37,400 
acres, and in species-count of land vertebrates from 
4 to 120. The 2 smallest islands with 8 and 4 
species respectively are of dubious value for our 
purposes, but the remaining 10 islands, with a 
minimum of 19 species, seem satisfactory. Land 
Vertebrates are defined as amphibians, reptiles, 
birds and mammals. Table VI gives the informa-
tion. 

Figure 10 presents the data in graphical form 
for the 10 larger islands and a log-log plot yields 
a fair approximation to a straight line. The curve 
as drawn has the equation N = 10 A 0·24 (where 
A is in acres) . This implies a high density of 
individual "vertebrate animals" compared with 
what we encounter among birds. The slope, or 

TABLE VI. Land vertebrates of islands in Lake Michigan 

Area in 
Acres Species Area Species Area Species Area Species 
-----
37,400 120 3,400 68 130 27 16 19 
13,000 88 895 38 115 36 3 4 
5,000 77 270 37 75 42 2.5 8 

z 
g 

..• ..• ... 1.1 J.O S.S 4.0 ..• ... 
LOG (Area in aern) 

FrG. 10. Land Vertebrates of Islands in Lake Michi-
gan : Species-Area Curve. The abscissa gives the areas 
of the various islands ; the ordinate is the total number of 
bird species breeding on each island. 

exponent 0.24, is not far below the theoretical 
0.27. If we include the 2 lowest points, a very 
questionable procedure, and give them equal 
weight with the other points, the slope of the 
curve increases to about 0.30. Giving them even 
a little weight brings the exponent close to the 
theoretical value. I am inclined to suspect that 
most islands have achieved a rough approxima-
tion to internal equilibrium, i.e. to a canonical 
distribution, but that there is a modest exchange 
of individuals among the islands or with the main-
land, perhaps by water in summer or ice in winter. 
This tends to depress the index slightly below the 
value for strict isolates, and makes the islands to 
some extent "samples" of the mainland. · 

The land plants of the Galapagos Islands 

So far we have been considering faunas, and 
it may be well to consider a flora. Kroeber ( 1916) 
has made a detailed study of 18 of the Galapagos 
Islands. He does not give the areas of any of the 
islands, and I have obtained these from other 
sources, which are not always in very exact agree-
ment, or by estimates from the U.S. Hydrographic 
Survey maps. One small island, which he calls 
Brattle, I have not been able to identify with 
assurance, and this has therefore been omitted, 
reducing our count to 17 islands. Since we shall 
have occasion to analyse Kroeber's results further, 
I have here included an outline map of the islands 
as Fig. 11. 
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FrG. 11. Outline map of the Galapagos Islands. 

We shall work principally with Kroeber's Table 
VI, from which our Table VII has been prepared, 
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TABLE VII. The land plants of the Galapagos Islands 

I 
Area 

No. Name (Sq. mi.) Species 

1. ............. Albemarle 2249 325 
2 .............. Charles 64 319 
3 .............. Chatham 195 306 
4 .............. James 203 224 
5 .............. Indefatigable 389 193 
6 .............. Abingdon 20 119 
7 .............. Duncan 7.1 103 
8 .............. Narborough 245 80 
9 .............. Hood 18 79 

10 .............. Seymour 1 52 
11. ............. Barrington 7.5 48 
12 .............. Gardner 0.2 48 
13 .............. Bindloe 45 47 
14 .............. Jervis 1.87 42 
15 .............. Tower 4.4 22 

(16) ............. (Brattle) - (16) 
17 .............. Wenman 1.8 14 
18 .............. Culpepper 0.9 7 

with an identifying number added for convenience, 
and with my estimate of the area of each island 
also added. There is a good deal of scatter, be-
cause area is not the only factor that decides the 
richness of faunas and floras, and accordingly we 
have computed 2 regression lines, one for the 12 
larger islands and one for all 17. The two are 
scarcely distinguishable but this is a coincidence ; 
too much attention should not be paid, as a rule, 
to very small populations. The regression line 
drawn in Figure 12 is the one for the 12 larger 
islands, but the "points" for the others are indi-
cated. The slope of this line is z = 0.325, a 'little 
higher than the theoretical value of 0.27 or there-
abouts. 

Summary of the z-values for isolates 

We now have 7 independent estimates of the 
index z of Species-Area curves for "isolates," all 
of them relating to islands. Some of these are 
oceanic islands, some are islands in a fresh-water 
lake, some are in tropical, some in temperate lati-

....... ,.. 
- ~ ~ ~ u u u ~ " 

LOG IArM 1n s.-e IIUn) 

FIG. 12. Plants of the Galapagos Islands. Species-Area 
Curve. The abscissa gives the areas of the various 
islands ; the ordinate is the total number of bird species 
breeding on each island. 

tudes. We have floras and faunas, and among 
the faunas we have mammals, birds, reptiles, am-
phibians, and "land vertebrates." 

Table VIII summarizes our results. It is clear 
that the average of the 7 z-values comes very 
close to the theoretical figure. The individual de-
partures from this average figure are in general 
modest, and the agreement may be regarded as 
satisfactory. Departures may be expected because 
of several factors. For instance, large islands are 
more likely to have high mountains, and there-
fore special habitats, than small ones, and then 
area alone would not adequately describe the 
opportunities for faunas. Other f""ctors are dis-
cussed below. 

TABLE VIII. The Species-Area curve for isolates (The 
coefficient "z" of the Species Area Curve-Summary 

Fauna or Flora Locality z-value Fig. No. 

Mammals ......... East Indies 0.280 none 
Amphibian and 

Reptiles ........ West Indies 0.301 none 
Birds ............. West Indies 0.240 7 
Birds ............. East Indies 0.333 8 
Birds ............. Madagascar and 

Comoros 0.280 9 
Land Vertebrates ... Islands in Lake 

Michigan 0.239 10 
Land Plants ....... Galapagos Islands 0.325 12 

Average (of7) ... 0.285 

Land Plants ....... Many areas 0.222 13 

The flowering plants of the world 

Williams ( 1943b) has plotted on a log-log basis 
all the data available to him for flowering plants of 
adequately defined areas, and these areas range 
from a few square centimeters to the land area 
of the globe. He has divided the information 
into 6 categories, the flora of arctic, temperate, 
subtropical, tropical, and desert regions and of 
oceanic islands, and he comments that over the 
linear portion of the graph, which extends from 
about 0.1 km2 to 102 km2, "to double the number of 
species, the area must be increased by thirty-two 
times." This may be compared with Darlington's 
statement that the area must be increased about 
ten-fold. Williams' statement amounts to saying 
that our exponent z = 0.20 approximately. Wil-
liams is working with the upper boundary of his 
scatter plot, the boundary between the area where 
there are observed points and the area where 
there are none. It happens that this boundary is 
quite well defined and Williams marks it with a 
broken line. The lower boundary on the other 
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hand ts nebulous. \Villiams treats the upper 
boundary as a statement of optimum conditions, 
i.e. as indicating the maximum number of species 
that can be accommodated on various sizes of 
"quadrat." 

The slope is actually a little steeper than 
Williams' estimate; I make it 0.222. In Figure 
13 I have reproduced all of Williams' points for 
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FIG. 13. Re-plotting of Williams' plants of many 
islands and other areas. Species-Area relationship. The 
upper curve is Williams' upper limit of maximum rich-
ness. The lower is the regression line for all plotted 
points. N is the number of species reported from the 
various areas. 

areas between 0.1 and 108 km2• Below this range 
many or most of the points must refer to 
"samples," i.e. to truncated distributions; it is 
virtually certain that a large proportion of the 
remainder do likewise. This gives us 135 points 
with which to work I have drawn 2 lines on 
the graph, one marking the boundary as estimated 
by eye, and the other the regression line of "y on 
x" (log N on log A) computed by orthodox 
methods. The 2 lines turn out to have identical 
slopes, z = 0.222. The equation of the regression 
line is in fact 

N 
log N 

118 Ao.222 

2.07 + 0.222 log A. 
(21) 
(22) 

By separating the categories into which Wil-
liams divides his data, it is possible to compute or 
estimate values of z for the tropical, temperate, 
and desert floras. I have merely estimated the 
slopes of the upper boundary lines. For tropical 
and desert regions, the slope seems to be about 
0.25, for temperate regions, 0.22. The regression 
lines may be a little flatter. In any case they 

are all roughly similar, and all a little below the 
theoretical value, which over this range, which 
extends to more than 10,000 species, is about 
0.265. We may speculate that though, on unit 
area we have approximately complete canonical 
distributions, yet some samples are truncated, 
thus depressing the index below its theoretical 
value, from 0.26 down to 0.22. It may be worth 
noticing that the depression is by no means so 
great as we found in Preston ( 1960) for the 
bird faunas of the Neotropical region (0.16+) or 
Nearctic (0.12+) where the truncation is pre-
sumably more pronounced. 

We may also note that while the statements of 
Darlington and Williams, that it takes 10 times, 
or 32 times, the area to double the number of 
species, sound considerably at variance, yet when 
expressed as an index the difference is only 
between 0.22 and 0.30. It will not escape notice 
that the average of these two is 0.26, almost 
exactly the theoretical value, but I think this is 
accidental. 

Our justification for ignoring those areas in 
Williams' graph below 0.1 km2 lies less in the 
fact that Williams himself did so than in the fact 
that we here have many counts involving less than 
SO species, and scarcely any with more than a 
hundred, and this brings us to about the limit for 
satisfactory statistical work (This restriction 
makes it difficult to work with the extensive tabu-
lations of Vestal 1949. However see below.) 

There is another calculation we can make, of 
a somewhat more risky kind, since the index 0.222 
differs appreciably from the theoretical one of 
0.262. We can compute the theoretical number of 
individuals per square meter and see how it agrees 
with what Williams has to say on the subject. 

The regression line not far from the middle 
of the range we have studied gives 1000 species 
at about log A = 4.2 or A = 1.6 X 104 km2• 

From Table I we should have I/m = 1.47 X 1010 

individuals when N = 1000 species. Then if we 
assume tentatively that m = 1 or thereabouts, this 
involves approximately one flowering plant to the 
square meter, averaged over tropical, temperate, 
and arctic areas. The boundary line would give 
as an "optimum" or maximum concentration 
something like 30 cm2 to a flowering plant. 

Williams says, on p. 260, "Available informa-
tion indicates that there is about one plant per 
square centimeter in temperate grassland, about 
one per square meter in woodland, and about one 
per hundred square meters upwards in semi-
desert areas." Thus our estimates fall well within 
the range of concentrations given by Williams, 
and since we have evidence that m can vary at 
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least over the range from 10 to 1/10 or rather 
more, the agreement can only be regarded as 
satisfactory. 

Summarizing this section, we might say that 
there are a number of cases where the theory of 
isolated canonical ensembles seems to be con-
firmed by the exprimental, or observational, evi-
dence ; or at least the observations seem to accord 
with the theory. 

THE PROPERTIES OF "SAMPLES" 

Introduction 

In the previous two sections we examined first 
the theory of complete canonical ensembles and 
then the available observations on ensembles that 
seemed likely to be substantially complete. Un-
der ideal conditions we think of these as "iso-
lates." Information of this sort is rare, and in 
general we have to content ourselves with 
"samples" drawn from a presumably complete 
canonical universe. The relationship between 
sample and universe was discussed briefly in 
Preston ( 1948). What we get, if the sample is 
a random one, is a truncd.ted lognormal distribu-
tion. To a close approximation the sample has 
the same modal height (yo) as the universe, and 
it indicates correctly the logarithmic standard 
deviation (a). From these figures the total num-
ber of species (N) in the unknown universe may 
be computed, though we may have observed or 
collected, in the sample, only 70 or 80% of them. 

A large part of the field work of an ecologist 
consists of taking samples, so the properties of 
samples have great practical importance. The 
purpose of the sampling is in nearly all cases to 
deduce something about the "population," "uni-
verse," or "stand" or "community" that is being 
sampled, so the relation between sample and uni-
verse is a matter of prime concern. Some of the 
problems that arise are of broad scientific interest. 
In large samples, which typically should contain 
at least a couple of hundred species and at least 
forty or fifty thousand individuals, the problems 
are largely analytical in nature ; in small or very 
small samples, biological peculiarities, especially 
"contagion," positive or negative (See Cole 
1946), become very important ; with larger 
samples the "contagion" tends to smooth out and 
disappear. 

A "sample" may be obtained by catching moths 
in a light trap. Obviously we do not catch all 
the moths that are on the wing, and it is clear 
that we are dealing with a sample, though it is 
far from clear what "universe" we are sampling. 
It is important not to assume that we know this 

from general considerations; in particular, in,' this 
instance, we must not assume that it is the popula-
tion of a definite geographical area. Some of the 
noctuid and hawk moths we catch may be very 
strong fliers and may have crossed the English 
Channel or some larger body of water from foreign 
parts; some of the geometrids may be very weak 
fliers and originate entirely close at hand. Similar 
considerations apply to birds and even to plants, 
and even more obviously to wind-blown pollen. 
The universe being sampled is simply what the 
sample says it is; it must be ascertained from the 
internal evidence, not from assumptions. This 
applies to "quadrats" of plants, and hence to the 
Species-Area curves thereof, just as it applies to 
moths in a light trap. 

Fundamental differences between sample and uni-
verse 

There are 2 very obvious differences between 
a sample and a universe : first, the ratio of species 
to individuals is vastly higher in the sample than 
in the universe, and second, there are vastly more 
species represented by a single specimen ("single-
tons"), or by a few specimens, in the sample if it 
is a "random" one. 

Let us suppose that we have a "fixed" universe 
which will not expand as. we collect our random 
sample, and let us examine our collection as we 
collect it. 

The first moth into a light trap may be one of 
the commonest species, but it is more likely to 
be one of some other, since the commonest spe-
cies is not as plentiful as all the other species 
put together; hence it may very well be that at 
first we collect half a dozen moths all of different 
species. Thus we accumulate species, at first, as 
rapidly as we accumulate individuals. As we con-
tinue collecting this situation ceases to obtain, and 
after a time the addition of new individuals piles 
up indefinitely, while the addition of a new species 
is a rare event. We have reached the point of 
diminishing returns. 

In Preston ( 1948) we showed that doubling the 
catch of individuals was approximately equivalent 
to withdrawing a graph of the lognormal distribu-
tion from under a Veil-line to a distance of one 
more octave. This is a very close approximation 
for most of the cases of practical importance, or at 
any rate those cases we were considering in 1948. 
But actually withdrawing the graph by one octave 
rather more than doubles the count of individuals. 
It doubles the count for all those octaves that 
were previously withdrawn and it adds in addi-
tion one individual for each species in the new 
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octave now unveiled. This modification of our 
1948 statement is of significance only at the be-
ginning of collecting. 

The index "z" in the Arrhenius Equation, when 
collecting at random from a fixed universe 

The Arrhenius equation, in ecological work, is 
the statement that the number of species ( N) is 
connected with the area (A) by the equation 

N = KAz 

where K and z are constants. This equation is 
not given by Arrhenius but is implied by his 
work. (See Preston 1960) . This is of the same 
form as our equation ( 16). Note that we are not 
referring to that other Arrhenius equation that 
concerns the rate of chemical reactions and their 
variation with temperature. 

Suppose in our collecting we have begun at the 
octave Rmax and have reached octave R, going 
from right to left across our Species-Curve. 

The number of species we have collected is 

Q = YR + YR+l + YB+2 + • · · · + YRmax 

L ~=max (y) (23) 

The number of individuals collected is 

I = YR + 2YR+l + 22YR+2 + 23YR+3 + . . . . . + 
2(Rmax--R) YRmax (24) 

Let us now collect till the next octave is fully 
exposed. The additional number of species col-
lected is 

~Q = YR-1 (25) 

The additional number of individuals collected is 

~I = I + YR-1 (26) 

For a given number of species ( N) in the fixed 
universe, we can, provided it is canonical, obtain 
the value of y at any octave, and also the value of 
I/m. 

Assuming that m does not change as we collect, 
and there is no reason why in a fixed universe it 
should, we can compute the index z in the Arrheni-
us equation as 

z = (~log N/ ~log I) (See Preston 1960) (27) 

This has been done for the case where N = 200 
species in the universe, and where in consequence 
a = 4.07 octaves if the universe is canonical. The 
tabulation is not reproduced here, but in Figure 
14 we give a graph of the Index z as ordinate 
against the percentage of species collected. It 
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PER CENT COMPLETION OF 200 SPECIES UNIVERSE 

FIG. 14. The index "z" of the Arrhenius equation for 
a truncated distribution. 

will be seen that at first we collect species 
as fast as we collect individuals ( z = 1), but by 
the time we have collected 15 or 16 species (7 or 
8% of the total of 200 species available) , z has 
fallen to 0.6, and from this point on it continues 
to fall steadily till it reaches z = 0.0 as the last 
species is collected. 

The inconstancy of z 

It follows that "z" in the Arrhenius equation 
is not by any means a constant under the condi-
tions we have stipulated, and since the argument 
applies to increasing sizes of quadrat, i.e. to a 
species-area curve, as well as to a sample of 
moths in a light trap, it follows that a log-log plot 
of a species-area curve will not give a straight 
line, at least not under the stipulated conditions. 

The reason we sometimes find a fair approxi-
mation to a straight line in the log-log plot is 
that, after we reach a certain degree of complete-
ness, the universe begins to expand as fast as the 
sample. This seems to happen typically when we 
have collected some 75 or 85% of the initially-
available species. The remaining species are very 
rare, and it requires a prodigious effort and the 
capturing of innumerable individuals to get these 
rarities by strictly random collecting. We are 
likely to obtain a lot of "strays," "casuals," and 
"accidentals" before we succeed in netting all the 
rare species that are legitimately present. 

In Figure 14, Williams index of 0.22 would be 
reached at 64% completion, but his data probably 
relate to a mixture of plant-isolates (with a z in-
dex of 0.27) and of "samples" with an index well 
below 0.22. The index we found (Preston 1960) 
for the neotropical avifauna, z = 0.16, is reached 
at 73% completion, and the figure of z = 0.12 
( nearctic avifauna) is reached at 83% completion. 
This last point is at just about one standard devi-
ation beyond the mode. Collecting by random 
methods beyond this point is a rather unprofitable 
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procedure; deliberate searching now pays divi-
dends. 

The Species-Area Curve for samples 

Even when the sample-area seems to be well de-
fined and our methods systematic rather than 
random, as in determining the breeding birds 
of a county or some such area, if we succeed in 
locating every pair and in counting them, we shall, 
in general, have a sample rather than a universe. 
Usually it will approximate to being a sample 
of a much larger area, perhaps of an area as large 
as a state. 

From the same data as before we can construct 
a Species-Area curve for such samples. Let us 
hide the canonical curve completely behind the 
veil line, and then withdraw it octave by octave. 
At each step of the withdrawal we add a number 
of individuals, slightly more than doubling, in 
fact, the number we have already counted, as giYen 
by equation ( 26). A number of individuals may 
be taken as proportional to an area. At the same 
time we add a number of species given by equa-
tion ( 25). We plot the accumulated area loga-
rithmically as abscissa, and the accumulated 
species either arithmetically (Gleason) or loga-
rithmically (Arrhenius) as ordinate. In Figure 
15 we have used the latter method of plotting. 
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FIG. IS. Theoretical Species-Area curve for samples. 

In this figure, as in the previous one, we assume 
that the universe initially sampled consists of 200 
species. The left-hand end of the curve is shown 
as a broken line, till we have captured or observed 
20 species ; below this level we must in practice 
expect all sorts of erratic results, and indeed for 
some little distance beyond it. The initial part 
of the curve is fairly straight and quite steep, but 
not so steep as the limiting tangent, except at the 
very ongm. This tangent is indicated; it repre-
sents the start where every new specimen is likely 
to be of a new species. See Preston ( 1960) for a 
discussion of such tangents. 

At the right-hand end of the curve, we have 3 
lines. The lowest is the theoretical behavior of an 
isolate or fixed universe. There are only 200 
species all told, so the curve flattens to horizontal 
at this level. In practice, however, before we 
reach this point the effort to collect the few re-
maining rare species by random methods results, 
as we have seen, in causing the universe itself to 
expand. The middle line, therefore, is drawn as 
a straight line, tangent to the curve at about 80% 
completion (i.e. when we have collected 160 spe-
cies) and having a shape corresponding to z = 
0.12. This resembles the situation we encountered 
in our study of the Species-Area Curve of Nearctic 
breeding birds (Preston 1960) . In that case it 
seemed as though initially our universe con-
sisted of somewhere around 75 or 100 species 
and by the time we had collected 80% of them 
the universe was expanding as fast as the sample. 

The upper line is the corresponding tangent 
for the neotropical fauna, with a slope of 0.16. As 
we go farther to the right (we are not now limited 
to the right hand end of the graph at 200 species) 
both of these tangents will ultimately curl upwards 
in practice, as discussed in Preston ( 1960). 

The general appearance of the curves, with the 
double-logarithmic or Arrhenius type of plotting, 
is that of a pair of more-or-less straight lines 
meeting at an obtuse angle, but rounded off one 
into the other, the steeper of the lines being toward 
the left. The graph resembles fairly well the 2 
curves found in practice in the previous paper. 

The size of the universe in terms of the properties 
of the sample 

Hidden beyond the Veil-line of our truncated 
distribution, which is our sample, are a number 
of octaves which are needed to complete our uni-
verse. So far as species are concerned, this 
may amount to only a modest addition, but for 
individuals each octave represents a doubling of 
the population. The complete universe is there-
fore usually many times as large as the sample. 

In Table I the quantity x is the half-range in 
terms of the standard deviation as unit, i.e. x = 
Rmax/a. To a first approximation, for the cases 
we have encountered and are likely to encounter 
in practice, with N between 200 and 800, x is close 
to 3.0. 

When we have collected as far as one standard 
deviation beyond the mode, we have accumulated 
84% of the species in that universe, but we still 
lack 2 a or thereabouts of having the complete 
curve. Since a is usually around 4 or 5 octaves, 
we still lack some 8 or 9 octaves. The size of the 
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universe is therefore 28 or 29 times the size of the 
sample, or 250 to 500 times as large. 

This statement is better put in this form : we 
should have to collect 250 to 500 times as many 
specimens before we had a reasonable chance of 
collecting one specimen (or pair) of the rarest 
species. Better yet, the statement is true in its 
original form if m = 1, and it frequently seems 
to be near this. 

This would permit us, for instance, to estimate 
the overwintering population of the birds of the 
nearctic, using the Audubon Christmas Bird 
Counts (Preston 1958), if we consider only those 
species that were found by random methods. 
Suppose for the sake of illustration, that in a 
typical single year about 107 individuals were seen 
and that these represented 84% of the complete 
distribution and about 500 species. Then a should 
be about 4.5 octaves and x about 3.1. The end of 
the distribution would be about 9 octaves away, 
and the total number of overwintering individuals 
would be about 500 times the size of the sample, 
or 5 X 109 birds. (Again we are assuming that 
m = 1.) This is roughly equivalent to saying 
that, since the nearctic is roughly 4 or 5 X 109 
acres, we have one bird per acre wintering in the 
nearctic. They will of course be far from uniform-
ly distributed, most of them being along the sea-
coasts or the more southern parts of the country, 
where some acres will be black with redwings and 
starlings. Whether the estimate is fairly close 
or somewhat high may depend on whether differ-
ent parties of observers saw the same large flocks 
at different places, and on various other prob-
lematical matters. The computation merely il-
lustrates the possibility that we may be able, by 
more refined methods and especially, perhaps, with 
a surer knowledge of the value of "m," to estimate 
the total wintering population. 

We can also compute what fraction of a popu-
lation must be observed or collected in order to 
reach the mode, i.e. to collect SO% of the species 
and get at least a rough idea of the height of the 
mode. With m = 1, this fraction is simply 1/r, 
which may be ascertained from Table I. So, 
with a population of 200 species, we reach the 
mode when we have captured or observed 1/2720 
of the individuals. With 600 species we need to 
observe or capture only 1/17,000 of the total. 

GraphicaJ construction 

Suppose we have collected beyond the mode 
and the truncated distribution appears as shown 
in Figure 16. From the point A where the curve 
intersects the Veil-line, draw a horizontal line to 
intersect the curve again at B. From B draw the 

LOG• IINDMOUALS PER SPECIES) 

FIG. 16. Maryland State-wide Bird Count: graphical 
estimate of degree of completeness. 

vertical line BB1 intersecting the R axis in B1. 

Let C1 be the end of the finite distribution actually 
observed. B1C1 is the number (R) of octaves 
theoretically missing to the left of A, the curve 
being assumed quite symmetrical. Then 2R is the 
ratio of size of universe to size of sample. 

This particular plot is taken from Preston 
( 1957) and represents the State-wide bird counts 
of Maryland. 

Small samples 

For our purposes most samples are to be re-
garded as small if the number of species involved 
is less than about a hundred. The number of 
individuals may be extraordinarily diverse. If our 
ensembles were canonical, the number of indi-
viduals for any given number of species would 
be ascertainable from Table I. But small bio-
logical "universes," are greatly distorted by "con-
tagion." This is stated succinctly by Cain and 
Castro ( 1959) : Most plants "are more or less 
clumped or contagiously distributed" and by Hop-
kins ( 1955) : "Results support the view that most 
plant individuals are aggregated." A recent paper 
by Hairston ( 1959) may almost be regarded as a 
warning that contagion or clumping is so general 
and widespread that it is scarcely worth while 
constructing theories about noncontagious distri-
butions. The warning is sound, and was given 
earlier by Cole ( 1946), who emphasizes the fact 
that biological material, whether animal or vege-
table, is rarely distributed at random, but is nearly 
always more or less "contagiously distributed," 
and he examines the possibility of handling such 
distributions adequately by mathematical methods. 
But whereas Hairston's emphasis is on the 
"clumped" distribution, which he believes is char-
acteristic more particularly of the rarer species, 
Cole emphasizes that "contagion" can be "posi-
tive" (clumped) or "negative" (over-regular-
ized). 

A great deal depends on the nature of the bi-
ological material with which one is working, and 
even upon the season of the year. Thus in the 
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breeding season most passerine birds are, owing 
to their "territorial" propensities, over-regularized 
spatially, and therefore on a small area they are 
over-regularized in abundance. (See below, under 
Thomas, Hicks, Williams, Walkinshaw, etc.). 
But in the winter they "flock" and become 
"clumped," and it is not solely the rarer forms 
that do this. 

Plants are perhaps the most obviously clumped 
material, and sometimes approximate to pure 
cultures, as with Hopkins' ( 1955) Zostera com-
munity. However, this can be matched among 
colonially nesting birds, like Beebe's ( 1924) "pure 
culture" of boobies in the Galapagos Islands, or 
the Emperor Penguin (Aptenodytes forsteri) in 
Antarctica. Therefore it seems to me that we 
are justified in examining the properties of ran-
domly distributed populations, and treating them 
as a "norm," and we may treat contagion, whether 
positive or negative, as introducing a disturbance, 
modification, or perturbation into our calculations. 

Notwithstanding Hairston's ( 1959) comment 
that, so long as we are dealing with a single com-
munity, "departure from randomness increases 
with sample size," I think we are justified in 
assuming that in this paper we shall rarely be 
dealing with a single community, but with what 
he calls heterogenous material, in which departure 
from randomness decreases with increasing sample 
size. Thus in order to study contagion in our 
present context we must examine the properties 
of rather small samples. 

Since in the present paper we are concerned 
with abundance-distributions and want to know 
whether they conform to the lognormal type, and 
in particular to the canonical lognormal, a small 
sample for our purposes is primarily one that 
has rather few species, say a hundred or less. For 
with less than about one hundred we cannot plot 
the distribution graphically with much success. 
It is true we might use analytical methods rather 
than graphical ones, as being more powerful tools, 
but statistical fluctuations are not thereby pre-
vented from confusing the issue, and so in Preston 
( 1957) I suggested that an adequate sample called 
for something like a minimum of 200 species and 
something like a minimum of 40,000 individuals. 

Very little in the way of plant material meets 
the requirement of 200 species, or even 100, and 
much of it, in fact most of it, appears to have less 
than 50, often much less. The individuals may 
be very numerous, especially in our northern lati-
tudes where the floras are poor compared with the 
tropics (Cain and Castro, 1959) but, because 
the majority of plant distributions are "positively" 
contagious, we have an abnormally high number 

of individuals without accumulating many spe-
cies. Thus, in order to deal at all with the 
published literature on plant distributions, i.e., 
their relative abundances in a "community" or 
their Species-Area curves, we have to compile 
a tabulation and make a graph of what to expect of 
samples containing less than 100 species. 

Criteria for small samples 

With small samples in this sense, tt ts easier 
and perhaps more accurate to reduce them to 
graphs, and the easiest computation to make con-
cerns the (logarithmic) standard deviation a. 
Therefore in Table IX below we use the methods 

TABLE IX. Properties of small canonical ensembles 

Number of Logarithmic standard Ratio of individuals 
species N deviation a (octaves) to species I/N or 

more properly I/mN 
----------------1--------
100 ........ . 
80 ......... . 
60 ... . 
40 ...... . 
20 .... . 
10 .. . 
6 ...... . 
3 ...... . 
2 ...... . 

3.72 
3.62 
3.48 
3.26 
2.84 
2.37 
2.00 
1.40 
0.97 

26,600 
12,100 
7,500 
3,300 

390 
65 
20 
3.7 
1.5 

of our first section to get estimates of the value 
of a of I/mN for canonical ensembles ("uni-
verses") with less than 100 species. 

These values should be regarded as approxi-
mate only. They are graphed in Figure 17. 
On that same graph are shown a number of experi-
mental points exhibiting contagion, positive and 
negative, which will be discussed later. It should 
be understood that these figures relate to com-
plete, non-truncated, canonical ensembles; but 
where small samples seem not to be too severely 
truncated we can compute a as if the distribution 
were normal in order to get a rough picture of the 
effects of contagion and the "distortion" produced 
thereby. We shall see later that the observed 
departure of rr from its expected or canonical 
value gives an estimate of the degree of contagion, 
as indeed is otherwise obvious, and that con-
tagious distributions do not end at the crest of the 
"Individual Curve." 

S ken'1'less as a criterion 

It is very likely that contagious distributions 
are somewhat skewed, the mode lying to the right 
of the mean, i.e. at a higher abundance of indi-
viduals per species than the mean for negative 
contagion. This criterion, being subject to com-
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FIG. 17. The logarithmic standard deviation for small samples and universes, as a function of the num-

ber of species: N less than 100. The full line is the Canonical expectation, the broken line is the MacArthur 

"broken-stick" expectation. The Canonical line seems to divide positively contagious aggregates (above) from 

over-regularized aggregates ('below). 

putation, might sometimes be useful, but it is 
subject to greater statistical uncertainty than the 
standard deviation, which for the present seems 
sufficient for our purpose. 

Examples of negative contagion 

There are available a number of useful counts 
of breeding birds, which, being disposed to "de-
fend a territory," tend to be distributed more 
uniformly over the countryside than we should 
otherwise expect. There is more resistance to 
the incoming of an additional pair of a species 
that is already common in the area than there is 
to the coming of a species not yet well repre-
sented. Thus on a given area, the species are 
more nearly of equal abundance than they would 
otherwise be. This amounts to saying that the 
standard deviation in practice falls below its 
canonical value, and the points should lie below 
the solid line of Fig. 17. 

Thomas. The breeding birds of N eotoma, south-
central Ohio 

This report, given in Preston ( 1960), is val-
uable because we have the counts for 10 separate 

years on the same 65 acres. If we take each 
year and list the numbers of singletons, double-
tons, and so on, discarding the names of the spe-
cies, and then strike an average for the 10 years, 
gather the results into "octaves" and graph the 
outcome, we obtain Figure 18. Such a curve is 
somewhat typical of one-year counts and other 
small samples (Preston 1948), but in this case 
it does not make use of all the available informa-
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FIG. 18. A typical year's count of the breeding birds 
of "Neotoma," by E. S. Thomas. (Species Curve) 
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tion. In particular, it does not discriminate be-
tween singletons (say) of species that occur as 
singletons every year and of species that occur 
only once in 10 years. 

If we therefore retain the names of the birds 
and make this distinction, we can distinguish be-
tween species that have a 1 :1 chance of appearing 
in any one year and those that have only one 
chance in 4 or one in 8. This produces Figure 
19, where, so to speak, we get a peep behind the 

FH;. 19. Birds of "Neotoma," a typical year recon-
structed from a knowledge of what species were present 
in each of 10 years. (Species Curve) 

veil. Although the curve as drawn lies reasonably 
well among the observed points, which generally 
alternate above and below it, there could be some 
argument that a better curve might be one skewed 
to the right, descending abruptly and terminating 
at abundance 16. We shall not debate the point, 
but merely note that the number of species in-
volved ( N) is 56 excluding the cowbird, that a is 
1.73 octaves as against the canonical expectation of 
3.37, and 1/N is less than 3. The canonical 
expectation in a complete universe would give 
I/mN = 5000 or thereabouts. We may also note 
that the individuals curve Figure 20 continues 
past its own crest into its descending limb for an 

I 
I 

... 
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OBSERVED 
TERMINATION 

• 

FIG 20. The "individuals" curve for an average year 
at "Neotoma." The observed termination is well beyond 
the crest, as it should be for a negatively-contagious or 
over-regularized distribution. 

octave or so, a necessary consequence of the low 
a value of the Species-Abundance curve. 

Hicks (1935). Breeding birds near Westerville, 
Ohio 

This also is a 10 year count, in the course of 
which 86 species were observed, though the aver-
age for a single year was 63 or less. In Figure 
21 we give the graph, on the same basis as Fig. 
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Fu;. 21. Top, Hicks. Breeding Birds near Wester-
ville, Central Ohio. Ten year count. Center, Walkin-
shaw. Breeding Birds near Battle Creek, Michigan. 
Ten year count. Bottom, Williams. Breeding Birds near 
Cleveland, Ohio. Fifteen year count. 

19, except that I have used the accumulated totals 
for the 10 years and have not struck an average by 
dividing this result by 10. The value of a is 
almost exactly 2.0 octaves, the average value of 
1/N is about 3.5 for a single year, and there is 
a suggestion of skewness, as expected . 

Walkinshaw (1947). Breeding birds on 83 acres 
of brushy fields 

This is another 10 year count. Some 31 species 
were accumulated. The distribution is graphed 
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in Fig. 21. The standard deviation is almost 
exactly 2.0. 

Williams (1947). Breeding birds of a beech-maple 
forest near Cleveland, Ohio 

This is a 15 year count and 33 species, including 
the Cowbird, were accumulated on 65 acres. The 
value of a is approximately 2.0, and I/N is about 
4.2 pairs per species per annum. (Bottom Fig. 
21.) 

The counts of the individuals curves for Hicks, 
Walkinshaw and Williams all seem to lie about 
10 to 2 octaves to the left of the termination of 
the curve, which again is what is expected. 

Kendeigh (1946). Breeding bird counts in New 
York State 

These counts extended, in form usable by us, 
over 3 years in the early 1940's. The results from 
Kendeigh's tables I, II, and III, may be con-
densed for our purposes into the form of Table 
X below, with Thomas' results for "Neotoma" 
added for comparison. 

TABLE X. Kendeigh's breeding bird counts in New York 
state 

Kendeigh'a Table Number .. I II III ''Neotoma" 

Character of Woodland ... Beech Hemlock Beech Mixed 
Maple Beech Maple Deciduous 
Hemlock Hemlock 

Acreage involved ....... 8 21 62 69 
Number of species known 

breeding ...•.......... 24 17 18 56 in I 0 years 

Av. pairs per Species per 
Annum (1/N) ........ 1.22 2.48 4.0 -

Standard Deviation (a) 
oboerved a .•........ 1.26 1.32 1.22 I. 76 

Standard Deviation for a 
canonical ensemble with 
same number of species 

•' • • • • • • • • • • • 0 • • • • • • • • 3.0 2.75 2.80 3.45 

So far we have dealt solely with birds, and have 
tentatively ascribed the departure from the canon-
ical results to "negative contagion," or, in bio-
logical language, to the territorial demands of the 
birds. Let us now turn to an entirely different 
fauna, marine gastropods. 

Kohn (1959). Gastropods (Conus) in Hawaii 

Kohn examines the abundance-distribution of 
cone-shell species from several collecting locali-
ties, and plots them in terms of the MacArthur 
hypothesis discussed below. I have chosen to 
examine here two instances, Kohn's Figure 8A, 
because it is the first he gives, and his Fig. 16, 

which is the one that agrees most closely with 
the MacArthur distribution. 

For his Fig. 8A there are 4 species, and 136 
individuals, so that I/N (Kohn's m/n) is 34 in-
dividuals per species. This is more than we ex-
pect in a canonical distribution. Yet the stand-
ard deviation a appears to be only 1.11 octaves, 
far below the 1.67 octaves expected for a canon-
ical distribution. For his Fig. 16 there are 9 
species and 182 individuals, giving I/N = 20.2. 
This is much less than the canonical expectation, 
unless our "m" (not his) is not unity but 2 or 
3, as it may perhaps be. The standard deviation 
is about 1.38 octaves, far below the canonical 2.3 
octaves. 

These results suggest, but do not prove, that 
species of Conus may be over-regularized in dis-
tribution, so that the various species in a quadrat 
are of more uniform commonness than a random 
distribution would give. In correspondence Dr. 
Kohn says that Conus is not known to "defend 
a territory," but not much is known about it in 
this respect. We do know however that the genus 
is carnivorous, but the different species have 
different food-preferences, some eating marine 
worms, some fishes, and some other animals. 
Thus there is a possibility that food supply of 
itself might induce a non-random distribution, 
either directly, or indirectly by causing quasi-
territorial behavior. All these examples of pre-
sumed negative contagion (over-regularized dis-
tribution) are plotted on Fig. 17, and it will be 
noted that they all fall below the line, often a very 
long way below it. 

Examples of positive contagion 
Oosting (1942). Plants of the Carolina piedmont 

From Oosting's Table #1, dealing with fields 
abandoned for one year, I took Field #4, which 
has 15 species reported. The abundances are 
given in terms of "densities," and the standard 
deviation works out at about a = 3.52 octaves, as 
against the 2.65 expected for a canonical ensemble. 

Oosting (1942). Shrubs and vines in a 15 year 
old stand of the Carolina piedmont 

There are 10 species, and the standard deviation 
is a = 3.0 octaves, as against the canonical 2.37. 

I think these examples from Oosting are 
sufficient. He provides many other tables, and 
it seems, from a rather casual inspection, that 
most of the other tabulations might corroborate 
these 2. 
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The Herons of West Sister Island, in Lake Erie 
off Toledo 

This information comes from Mr. Harold May-
field. American Egrets first nested, so far as is 
known, in 1946. In that year a count showed 
that the heronry consisted of about 1500 Black 
Crowned Night Herons, 200 Great Blue Herons, 
and 10 American Egrets. This gives a a-value of 
2.95 octaves, far above the canonical value (1.40) 
for 3 species. The next year the number of Egrets 
doubled, and if everything else remained constant, 
the a-value would increase a little. In 1945 there 
were no Egrets, presumably, and so only two 
species nested. The a-value may presumably have 
been 1.44, which is still well above the canonical 
expectation of 0.97 for 2 species. 

Belknap (1951). Breeding birds on an Island in 
Lake Ontario. 

Belknap censused a small island of one acre 
from 1948 to 1951. He gives his count for 1951 
and comments briefly on earlier years. This 
island, like West Sister Island above, presumably 
behaves as an isolate, and this feature may be 
valuable. There were, in 1951, six species and 
a comparatively large number of individuals or 
pairs (965 occupied nests), giving a value of 
I/N = 160.8, far above the canonical expectation 
of 20 for N = 6. In Table XI we give the tabu-

TABLE XI. Belknap's breeding birds on an island in Lake 
Ontario in 1951 

MacArthur 
Species Observed Hypothesis 

Nests Prediction 

Ring-billed Gull .........•. 793 394 
Common Tern ............ 117 233 
Herring Gull .............. 34 153 
Double-crested Cormorant .. 19 99 
Black Crowned Night Heron 1 59 
Black Duck ............... 1 27 

965 965 

lation, with the figures predicted by the Mac-
Arthur hypothesis for comparison; the latter will 
be discussed later in this section. 

The standard deviation is a = 3.47 octaves, 
against the 2.0 of canonical expectation and a still 
lower figure for the McArthur distribution. 

Belknap. The same island in 1950 

Belknap does not give this count, but states that 
there were no Night Herons in 1950, that there 
were less than half as many terns, that there were 

twice as many Ring-billed Gulls, and that the 
Herring Gulls were "relatively stable." This 
leaves us with 5 species and a rough estimate of 
the 1950 population, given in Table XII. 

TABLE XII. Belknap's Island in 1950 

Estimated MacArthur 
Species Nests Prediction 

Ring-billed Gull ........... 1600 780 
Common Tern ............ 55 439 
Herring Gull .............. 34 267 
Double-crested Cormorant .. 19 154 
Black Duck ............... 1 69 

1709 1709 

The logarithmic Standard Deviation for the 
first column is 3.4 octaves, compared with 1.85 for 
the canonical ensemble of 5 species. Belknap's 
description of the 1948 and 1949 situations would 
lead to a similar conclusion. 

Henderson. A communal roost of passerines near 
Oberlin, Ohio 

Henderson describes this as a roost of "black-
birds," though it includes 500 Robins (T. migra-
torius), and the Redwinged Blackbirds were not 
positively identified. The pattern appears to be 
approximately as shown in Table XIII. 

TABLE .. XIII. Henderson's blackbird roost 

Redwings ............ . 
Cowbirds ............ . 
Robins .............. . 
Grackles ............. . 
Starlings ............. . 

5 (not positively identified) 
50 

500 
5,000 to 10,000 

50,000 

If we omit the Redwings which "were suspected 
but never surely identified," the logarithmic stand-
ard deviation comes out at about 1.1 orders of 
magnitude or 3.65 octaves. If we include the 
Redwings, the standard deviation will be greater, 
but it is almost off the map (Fig. 17) anyway. In 
this connection we may note that, while by ordi-
nary standards the roost is a communal one, there 
is often in such cases a partial segregation of the 
species, just as there may be a negro quarter in 
a town. 

These half dozen values of "clumped" or 
"colonial" distributions are plotted as points on 
Fig. 17. They all lie far above the line, and this 
is presumably true of "positively contagious" dis-
tributions generally. 

Seemingly contagion-free examples 

It seems only fair to note here that in looking 
for examples of contagious distributions, I found 
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3 that did not act quite as expected, but instead 
fell close to the line. One was Saunders' tally of 
the birds of Quaker Run Valley (Fig. 17). The 
explanation may well be the one advanced by 
MacArthur, that there are really several com-
munities involved and mixing them tends to 
produce such a result. Hairston has come close 
to saying the same thing. 

Another example was a count of plants by Buell 
& Cantlon ( 1951). The same reason is possibly 
valid, though the catagion to be removed is of 
the opposite sign. 

Finally I took the counts made by Mr. H. H. 
Mills and myself of the day-flying herons of the 
heronry of Stone Harbor, New Jersey, in 1959 
(unpublished) . Six species were involved and 
the count was of the homing herons and egrets at 
sundown, not of their nests. The difficulty here 
is the impracticability of distinguishing in the 
gloaming between Snowy Egrets and immature 
Little Blue Herons, for it was late in the season 
and the immatures were largely on the wing. 
One estimate of the partition gave a point nearly 
on the line. Another estimate would place it 
distinctly above the line. 

In any case the general picture seems clear. 
Gregarious ensembles tend to fall above the line, 
territory-guarding ones tend to fall below it. Thus 
the canonical distribution seems to justify itself 
as a "norm" corresponding to randomly-distrib-
uted species devoid of both positive and negative 
contagion, which can be regarded as perturba-
tions of the canonical. 

Possible restatement of the canonical hypothesis 

We are now in a position to make a surmise 
that the canonical hypothesis is a statement, per-
haps only an approximate one, of the behavior of 
lognormal ensembles when the individuals in the 
ensemble act completely independently and neither 
attract nor repel others of their own species. If 
I can interpret Hairston's views in the light of 
my own, it is the situation that obtains when the 
"community" is completely devoid of "organiza-
tion." When "organization" appears, it results 
in "contagion" and not solely the "clumping" or 
positive contagion that is Hairston's primary 
concern, but also the "negative contagion" of 
Cole and the "regularity" of Hopkins ( 1955 and 
1957). 

This suggests that our graphical description of 
a canonical ensemble as one whose Individuals 
Curve crests at its termination may very well 
be replaced by an analytical description of a log-
normal ensemble whose individuals (or pairs) 

completely "ignore" others of their own species, 
that is, are unaffected by their proximity or dis-
tance. Such a reformulation might be very use-
ful, as well as more satisfying esthetically than 
the one we have used, but I do not know whether 
it would prove so simple to handle mathemati-
cally. 

The MacArthur distribution 

A recent suggestion by MacArthur ( 1957), 
originally based on the analogy of the probable 
lengths of the fragments of a randomly broken 
stick, proposes that a population of m individuals 
may be apportioned among n species according 
to the law 

' 
(m/n) I: [1/(n - i + 1)] (28) 

i=l 

where m. is the number of individuals assigned 
to the rth rarest species and m/n is our I/N. 

The actual operation of computing the abun-
dance of the various species may be carried out as 
follows : suppose, for example, that n = 57 
species. The rarest species will have 1/57 (m/n): 
the next rarest (1/57 + 1/56) (m/n): the next 
(1/57 +1/56 + 1/55) (m/n) and so on. Now 
for comparison with the lognormal distribution, 
having obtained the MacArthur figures for each 
species we take the logarithms thereo~ and gather 
them into octaves for plotting, or compute the 
logarithmic standard deviation by orthodox 
methods. 

In Fig. 22 we graph the distribution for 
4 instances, where N = 5, 10, 100, and 1000 spe-
cies respectively. The scale of octaves at the 
bottom applies to all 4 graphs as abscissa, but the 
scale of ordinates varies, and is given in each case. 
With this method of plotting, the curve is single-
humped, tangent to the x-axis on the left but cut-
ting it abruptly on the right, skewed somewhat to 
the right and therefore only a rough approxima-
tion to a Gaussian or "normal" curve. We may, 
however, calculate the standard deviation "as if" 
the curves were normal, and we find that for 10 
species a = 1.49 octaves, and for 100 species a 
= 1.72 approximately. \i\fe may also easily com-
pute a for 2 species as 0.79 octave and for 3 
species as 1.00 octave. This permits us to draw, 
as a broken line in Fig. 17, the approximate posi-
tion of the standard deviation as a function of the 
number of species in the "community," as pre-
dicted by the MacArthur hypothesis. It lies far 
below the value predicted by the canonical log-
normal hypothesis. It passes very close to Kohn's 
2 points, and lies among the points for anti-
gregarious or territorially-minded breeding birds. 
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FIG. 22. The MacArthur distribution for 5, 10, 100, 
and 1000 species. 

It lies at an immense distance below the points 
for gregarious or colonially-nesting birds and for 
the "contagious" plant communities. Since the 
effects of contagion may be expected to smooth 
out, and die out, with very large areas or very 
large ensembles of species, in the overall picture, 
while the MacArthur distribution, even for 1000 
species (see Fig. 22) gives a a-value not much 
higher than for 100 species, the distribution would 
not apply to such aggregrations of species, as Mac-
Arthur himself has said. 

I therefore suggest somewhat tentatively that 
the MacArthur distribution is not the norm, and 
that the frequent agreement of Kohn's diagrams 
therewith is due to the cone-shells being somewhat 
over-regularized in their spacial distribution. We 
may note here Kohn's own comment that in a 
number of his diagrams "common species are 
too common and rare ones too rare" to agree with 
the MacArthur prediction. This statement 
amounts to saying that the logarithmic standard 
deviation of abundances is too high, which means 
that his points (not those I have plotted in Fig. 
17) are often above the MacArthur line, perhaps 
approaching the canonical line. 

It was, I think, MacArthur's original view that 
a genuine "community" might correspond ap-
proximately with his predictions, while fortuitous 
aggregations would more likely come close to the 
lognormal. This presents us with the problem of 
defining a genuine community. Superficially one 
might imagine that a heronry or a colony of gulls 
and terns and cormorants like Belknap's is a "com-
munity" since in some sense the birds "attract" 
one another in much the same way as human com-
munities are brought together. But we see from 
Fig. 17 and from the data in Tables XI and XII, 
that it is precisely such communities that depart 
most from the MacArthur prediction. We should 
have to define a community as a group of persons, 
animals, or plants that insist on holding their 
fellows at arm's length, or that are repelled by one 
another. 

Ma:rgaret Ferner's breeding birds at Cleveland, 
Ohio 

Since the MacArthur formula seems more ap-
propriate to territorial species than others, I 
thought we might examine one instance in more 
detail, and for that purpose use Ferner's ( 1955) 
data on 25 species of nesting birds. This time 
we plot simply the nests p~r species as ordinate 
against ordinal rank (of increasing commonness) 
as abscissa (Figure 23), and the MacArthur pre-
diction is plotted on the same graph. The de-
partures of the observations from the prediction 
are not random, but systematic, so that this aggre-
gation of species, though negatively contagious, 
does not agree well with prediction. 

Other pecularities of the Species-Area curve for 
satmples 

Samples, especially small ones, have a number 
of peculiarities, partly because they are samples 
and therefore likely to be incomplete or truncated 
distributions, and partly because they are small, 
especially in numbers of species, and therefore 
likely to be affected by contagion, positive or nega-
tive. Whereas the Species-Area curves for iso-
lates can be understood comparatively easily, those 
for samples may present greater difficulties. Even 
in the matter of graphing the plots there are 
problems, and in interpreting the results there are 
worse uncertainties. 

Methods and problems of plotting the 
Species-Area curves 

This subject is almost a monopoly of plant 
ecologists, who set out "quadrats" of various 
sizes and count the species in the quadrats. They 

numbers 



210 FRANK W. PRESTON Ecology, Vol. 43, No.2 

20 

I 
MAC ARTHUR FORMULA 0 

I 
I 

v 
~': 

I 
6o 

{ 
r ~ /o -t.: CURVE THROUGH 
/ OBSERVED POINTS 

ORDINAL RANK, INCREASING COMMONNESS FiQ. 

FIG. 23. Ferner. Breeding Birds of a Cleveland, Ohio, 
park. 

usually use quadrats that increase in size in a 
more or less geometric progression, for instance 
in the area ratios of 1, 2, 4, 8, 16, . . . . This 
is an advisable procedure, because the species 
count increases only slowly with increasing area. 
The geometric progression implies that psycho-
logically or subconsciously, the operator is work-
ing with the logarithm of the area and not with 
the area itself, yet many investigators have plotted 
the results on an "arithmetical" basis with number 
of species as ordinate against area as abscissa 
(e.g. Cain 1938, Hopkins 1957). This results in 
most of the points being crowded into a narrow, 
nearly vertical, line near the origin and being 
sparsely distributed farther to the right. 

The kink in Cain's curve 

Numerous plottings by the above writers and 
others are available to any inspector, so I have 
chosen to use one that Cain ( 1959, p. 110) did 
not plot, though he gave the data from which it 
may be plotted (Figure 24). Braun-Blanquet and 
others (see Hopkins 1957, pp. 441-443) as well 
as Cain at one time, believed there was a definite 
"break" in this curve, the initial part being 
essentially vertical and the later part being 
essentially horizontal, as if the curve "saturated" 

... 
AREA IN SQUARE METERS 

FIG. 24. Cain & Castro. Species-Area curve for savan-
na vegetation in Para, Brazil. 

at a certain level that gave the total species in 
the "community" or "stand." 

An examination of this and the many published 
curves suggests strongly that the curve approxi-
mates rather closely to a "generalized parabola," 
whose equation is 

yn =ax (29) 
where n is an exponent greater than unity, and 
not necessarily an integer. 

The ordinary "conic-section" or "quadratic" 
parabola has n = 2 in the above equation. The 
generalized parabola has other values, the most 
interesting ones being higher than 2, often much 
higher. The quartic parabola for instance has n = 
4, and the curve we have illustrated strongly sug-
gests a quartic. Since y, or N, the number of 
species, is necessarily positive, and so is x, or A, 
the area of the various quadrats, the index n may 
take all positive values and the curve will remain 
real. Whatever the value of n, when limited to 
positive values the curve will pass through the 
origin and, provided n is greater than unity, it 
will there be tangential to the y-axis. The higher 
the value of n the closer it will hug the axis and 
the sharper will be the bend when it breaks away 
from it. Thus in a sense the break is real. 
The curve never becomes parallel to the x-axis, 
but continues indefinitely to climb, though always 
at a decreasing rate with increasing size of area. 

In order to help visualize the "higher" para-
bolas, I have graphed several of them in Figure 
25 and by setting a= 1 in equation (29), I have 
caused all curves to pass through the points 0,0 
and 1,1. This leaves n as the only variable 
parameter, and it will be seen that as n increases 
the curve is steeper near the origin and flatter at 
the larger coordinates. 

It is a property of the ordinary quadratic para-
bola that its curvature is greatest at the vertex, or 
origin in this case, but this is not true of the higher 
parabolas. Nonetheless all of them have a single 

numbers 
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.. 
FIG. 25. A family of generalized parabolas, and the 

locus of points of maximum curvature. 

point of sharpest curvature. In this sense there 
is a theoretical "break" in the curve, though it 
is not a discontinuity of any sort. 

The curvature of any curve at any point 1s 
given by 

1 

R 

and if we differentiate this once more and set 

(30) 

d(1/R)2 = 0 or dR 2 = 0 (31) 
dx dx 

and solve for x, we can define the point of maxi-
mum curvature in terms of the abscissa, or by 
solving for y we can define it in terms of the 
ordinate, which is usually (in our problem) more 
satisfactory. 

In this case, we find that the point is given by 

. 2n-2 - a2 ( n - 2 ) y -- --
n2 2n - 1 

(32) 

On Fig. 25 I have plotted the locus of the max-
imum curvature. It is probably the break-point 
that Cain was seeking. In practice, however, it 
is not easy to determine such a point by graphical 
methods. It is much easier, even with a curve 
perfectly free from experimental or statistical 
errors, to find the point by equation ( 32), and for 
that purpose we have first to find the value of n. 
Clearly, if the curve really is a parabola, this is 
most easily done by taking logarithms of both 
ordinate and abscissa, whereon the equation be-
comes 

n log y = log a + log x (33) 

which is a linear relation between log (Species) 
and log (Area) : i.e. the curve ought to be a 
straight line. This log-log plotting I have else-
where (Preston 1960) called an Arrhenius plot-

2 I am indebted to Dr. R. E. Mould of Preston Labora-
tories, Inc., now American Glass Research, Inc., for this 
result. 
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FIG. 26. The Cain & Castro Species-Area curve on a 
log-log (Arrhenius) basis. 

ting. Using it on the data of G.A. Black and S. A. 
Cain as reported in Cain and Castro ( 1959), for 
savanna vegetation in Para, Brazil, we get Figure 
26, which, except for the first 2 points, is a pretty 
fair straight line. The slope is given by k = ljn 
= 0.14, or n = 7 approximately, and the curve, 
over 2 0 orders of magnitude, is a pretty good 
generalized parabola. 

The Gleason plotting 

Plant ecologists seem to have made less use of 
the Arrhenius "log-log" plotting than of the 
Gleason "semi-log" plotting. It is necessary, in 
order to space the points fairly uniformly across 
the graphs, to take the logarithm of the area, but 
it is not essential to take logarithms of the number 
of species. Furthermore, because species increase 
so slowly with increasing area, the logarithm of 
the number of individuals is a linear function of 
the number of species over rather wide intervals. 
Thus if the Arrhenius plot gives a straight line, so 
will the Gleason plot, over an interval of an order 
of magnitude or more in the size of quadrat or 
time of observation. 

In Figure 27 we illustrate this point by means 
of Thomas' data on the 10-years of breeding bird 
counts on the 65 acres of Neotoma in south-central 
Ohio. The same data are plotted by the Arrheni-
us and by the Gleason methods. In each case 
the abscissa is a logarithmic scale of years-of-
observation. The ordinate for the lower curve is 

.. 

LOG 10 (YEARS OF OBSERVATION} 

FIG. 27. Gleason and Arrhenius curves compared over 
a range of one order of magnitude ( 3.3 doublings or 
octaves). 
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logarithmic and is indicated at the left ; for the 
upper curve it is arithmetical and is indicated at 
the right. Both curves are satisfactorily straight. 
On a log-log basis the index k = 1/n = 0.132. 

If the range of abscissae is large enough, both 
curves cannot continue to be straight, unless k is 
so small that both curves are substantially hori-
zontal. For if the log-log curve is straight, the 
Gleason curve will be concave upwards, and if 
the Gleason curve is straight, the Arrhenius curve 
will be concave downwards. 

Brian Hopkins~ curves (1955) 

In order to examine whether the Gleason or the 
Arrhenius plot is more satisfactory in practice, on 
a purely empirical basis, it is necessary to have 
data over a range of areas of far more than one or 
2 orders of magnitude. Hopkins ( 1955, 1957) 
gives a tabulation of a dozen communities or 
stands of plants over a nominal range of 8 orders 
of magnitude or a little more. In his 1955 paper 
he uses the Gleason semi-log plotting, and the 
curves tend to be concave upwards and of steadily 
increasing slope. This suggests that our Arrheni-
us log-log plot might be better, or at least more 
instructive, but in neither paper does Hopkins 
mention it. 

With any form of plotting or computing, we 
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run into trouble with the smallest areas, of 0.01 
cm2 and 0.07 cm2 respectively. Here only 1 or 
2 species, or even less than one species, are in-
volved. These points I have had to ignore. The 
situation is better, but still statistically not too 
happy, with the other areas below one m2, for we 
usually have less than 10 species, sometimes only 
4 or 5. These, however, may conceivably make 
a "community" or at any rate a "stand." 

The use of the log-log plot, though logical, is 
itself a source of some suspicion, to the extent that 
a liberal use of logarithms tends to reduce any 
monotonic function to a straight line, and this is 
especially the case when the dependent variable 
(the number of species) increases slowly with the 
independent variable (area) as it does in vegeta-
tion stands. The curve is going to approximate 
not only a straight line, but a horizontal line. 
Fortunately, Hopkins covered a very wide range 
of areas, and in most cases took 50 samples at each 
size of area in order to strike an average for his 
"point." Thus comparatively small departures 
from the graduating line will usually be meaning-· 
ful, especially if the departures are systematic, to 
one side of the line for several points in succession. 

We may summarise the outcome thus : 
Hopkins' stand #2. Grassland at W rynose Pass, 
Lake District, England: 55 species (bottom, Fig-

10 100 

1-------~M.--------------~ 

10 100 1000 
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FIG. 28. Lower, Hopkins, Stand #2. Grassland in the Lake District, England. Species-Area Curve. In 
the following Figures, the ordinate (N) is the number of species on the various observed areas, plotted 
logarithmically. These are all log-log plottings (i.e. "Arrhenius plottings"). Upper, Hopkins, Stand #3, 
Beech Wood, Chiltern Hills. 

numbers 
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ure 28) . This is a good straight line over its 
whole length of 6 0 orders of magnitude. The 
slope, k, is 0.193. 

Hopkins' stand #3. Beechwood in the Chit-
tern Hills : 28 species. The curve seems to be 
concave upwards, steepening towards the right, 
but the last 5 or 6 points lie quite well on a straight 
line with a slope, k = 0.327. This is an un-
expectedly high value, more appropriate to a set of 
isolates than to a sample. 

Hopkins' stand #4. Blanket Bog in Mayo : 47 
species. From 1 cm2 to 4 m2 the curve is close to 
a straight line, with a slope of k = 0.245. Then 
it changes abruptly to another much flatter slope, 
with k = 0.097 (Figure 29). 
Hopkins' stand #5. Bog at Rannoch, Perthshire: 
48 species. This somewhat resembles #4, the 
initial slope is k = 0.203, changing abruptly at 
1/4 m2 to a flatter slope, k = 0.135. In both #4 
and #5 there is evidence of systematic departure on 
this flatter slope, as if it is slightly concave up-
wards (Figure 30). 

Hopkins' stand #6. Pine woods at Rannoch, 
Perthshire. This set of points is successfully 
graduated with 2 straight lines, but here the upper 
slope is the steeper: k = 0.159 changing to k = 
0.229. This shows that the curve can be "con-
cave" upwards or downwards. 
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Hopkins' stand # 11. Blanket bog in the Pennine 
uplands, England : 46 species. Like the other 
bogs, this is initially a good straight line (from 1 
cm2 to 25 m2 ) changing abruptly then to a flatter 
slope, defined only by 3 points. The initial slope, 
valid over 50 orders of magnitude gives k = 
0.218. 

Thus our k values come out as follows : 

Nmax k 

Grassland (#2) 55 0.193 
Woodland (#3, Beech) 28 0.327, less at low areas 
Woodland (#6, Pine) 42 0.229, less at low areas, where 

k = 0.159 
Bog (#4) 47 0.245, less at gxeater areas, 

where k = 0.097 
Bog (#5} 48 0.203, less at greater areas, 

where k = 0.135 
Bog (#11) 46 0.218, less at greater areas 

The average slope of the more trustworthy-
looking sections of the curves is k = 0.24, a little 
above Williams ( 1943b) and not far below the 
theoretical value for a series of isolates, but well 
below it if we take account of the flatter slopes 
frequently present. 

If we can interpret these curves at all, it seems 
as though they tend on the average to come close 
to being. straight lines. Some are quite straight, 
the 2 woodland areas are concave upwards and the 
3 bogs are concave downwards. The average, in 
fact, of all 12 of Hopkins' stands is very close to 
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FIG. 29. Lower, Hopkins, Stand #6, Pine Woods. Perthshire. Species-Area Curve. Upper, Hopkins, 
Stand #4, Blanket Bog, County Mayo. 
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FIG.. 30. Lower, Hopkins, Stand #5, Bog in Perthshire. Species-Area Curve. Upper, Hopkins, Stand 
#11, Blanket Bog, Pennine Uplands. 

a straight line over nearly 6 orders of magnitude, 
with an exponent of about k = 0.16. 

It would seem possible that bogs in Britain may 
have a limited flora, and that by the time we reach 
a few square meters in area we are beginning to 
exhaust the flora. On the other hand, woodlands 
there seem to get off to a slow start, and begin to 
show what they can do about the time we decide, 
at a hundred square meters or so, to call off our 
survey. The grassland seems to strike a very 
happy balance between the two. 

It should be noticed that all samples are 
"small" in number of species and, therefore, 
positive or negative contagion can markedly affect 
the slope which can assume a new value, higher 
or lower (depending on the sign of the con-
tagion), when the contagion begins to smooth out. 
However that is not the only thing that can bring 
about a change in slope since, as we have 
seen earlier, a constant slope for a long distance 
should imply, in a lognormal ensemble, that the 
universe is expanding as fast as the sample. To 
expect it to keep exact pace with the sample for 
any great distance seems unreasonable. Thus the 
curve may steepen and flatten from time to time, 
and one of Hopkins' stands, his #8, actually ap-
pears to do this. The rest seem to exhibit a single 
change, usually somewhat abrupt, but in one case 
gradual. 

The interpretation I tentatively put upon these 

results, and upon the fact that most of the ex-
amples have an index or exponent of k ( = 1/n) 
between about 0.15 and 0.24, is that from each 
area we have a sample of 60% to 80% of this 
species in the "universe" we are instantaneously 
sampling. 

Preston. Birds of the nearctic and neotropical 
regions 

Lest the botanists think they have a monopoly 
on problems dealing with species-area curves, we 
may note that the birds of 2 major zoogeographic 
regions produce similar results. Over a very 
wide range of areas, we found (Preston 1960) 
that the index k for the nearctic was around 0.12 
and for the neotropical was about 0.16, and again 
we interpreted this to mean that after we had 
"collected" some 70% or 80% of the universe 
we were sampling, the universe started to expand 
pari-passu with our further observations. 

Vestal's sigmoid 

In 1949 Vestal in the U.S.A. and Archibald in 
Britain (quoted by Hopkins 1955) reached the 
conclusion that in the case of vegetation stands 
there was a tendency for the species-log area 
(Gleason) curve to be sigmoid ; it began at a low 
slope, steepened considerably, and then became 
less steep. Hopkins ( 1955) is very dubious about 
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the reality of this. I see no reason why the 
effect should not sometimes exist ; indeed if the 
dominant factor in controlling the slope is the 
phenomenon of the "expanding universe," then 
failure of the universe and sample to keep exact 
step must produce steepenings and flattenings 
of the curve which can sometimes take the rather 
simple form of sigmoids, or S-shaped curves. 

The evidence as presented by Vestal and by 
Archibald (or Hopkins 1955, Fig. 13) is on a 
Gleason-plot basis, but when the range of area is 
modest, the same phenomenon would appear in a 
log-log (Arrhenius) plot. Archibald's curve how-
ever covers a wide range. The possibility that 
such curves may exist can hardly be disputed on 
theoretical grounds ; how often they occur in prac-
tice is a matter for observation. 

We may note, however, that when the curve 
gets off to a slow start, an almost horizontal line 
at or near one species per quadrat, suggests that 
the "universe" is nearly a pure stand. We must 
expect that sooner or later, as we expand our 
quadrats, there will be a marked steepening of 
slope showing that the stand is not a pure one. This 
happened with Hopkins' example #3, our Figure 
28, a woodland, and when the curve steepened 
it acquired so high a slope that it is doubtful if it 
could keep it up for long. If the quadrats could 
have been extended a few more orders of magni-
tude (which may not have been physically possible 
in recent centuries) it is almost certain that the 
slope would have flattened again to some important 
extent, and then we should have had a Vestal 
sigmoid. 

All the species-area curves here replotted from 
Hopkins' data are plotted to the same scale, and 
if we superpose them we get Figure 31. It is 
difficult to resist the speculation that if we had 
data beyond the experimental limit of 400m2, say 
up to 106 m2, we should find all the curves fol-
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lowing closely a single line with a slope or index 
of 0.169, and indicating that at 1 km2 the flora of 
the British Isles tends to amount to 250 species or 
thereabouts. 

If the same index continued valid up to 2000 
km2 ( = 800 square miles), the area of such a 
county as Leicestershire, the number of species 
should be about 880. An earlier count gave 890, 
but Horwood and Gains borough ( 1933) report 
a total of about 1400, including, however, the 
"aliens," which are numerous. 

The curves are actually closer together at the 
upper limit of observation ( 400 square meters) 
than they are at 1 cm2, and much closer than at 
1 m2• It is not till we get above 100 m2 that 
all the curves represent 20 species or more, and 
this suggests that the divergences below this 
area are largely the properties of samples that are 
statistically too small. This seems to be an almost 
universal property, or shortcoming, of botanical 
quadrats. 

Summary 

We see then that "samples" have some prop~ 

erties in common with isolates, and in some 
respects they differ radically from them. One of 
the most important of these differences is the slope 
of the Arrhenius plot. For isolates it is theoreti-
cally about 0.26 to 0.28 depending on the num-
ber of species involved, and we found that in 
practice it is often somewhere near this figure. 
For samples it is much less, sometimes no more 
than half this figure. This leads to an important 
zoogeographical conclusion to be discussed in the 
next section. 

-To Be Continued-

Literature Cited and Acknowledgments will be 
found at the end of Part II of this paper. 
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FIG. 31. Hopkins' 6 curves superposed. The heavier line that projects beyond both ends may be a sort 
of average to which all 6 ultimately trend. 




