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Abstract

This vignette is a (slightly) modified version of the paper submitted to the Journal of
Statistical Software.

The smacof package provides an infrastucture for flexible fitting of multidimensional
scaling (MDS) techniques. Since its first publication (De Leeuw and Mair 2009b) the
functionality of the package was enhanced, and several additional methods, features and
utilities were added. Major updates include a complete re-implementation of multidi-
mensional unfolding allowing for monotone dissimilarity transformations, including row-
conditional, circular, and external unfolding. Also, the constrained MDS implementation
was extended in terms of optimal scaling of the external variables. Further package ad-
ditions include various tools for goodness-of-fit assessment, functions for unidimensional
scaling, gravity MDS, asymmetric MDS, Procrustes, and MDS biplots. All these new
package functionalities are illustrated using a variety of real-life applications.

Keywords: multidimensional scaling, multidimensional unfolding, SMACOF, R.

1. Introduction

Multidimensional scaling (MDS; Torgerson 1952; Kruskal 1964; Borg and Groenen 2005) is
a technique that represents proximities among objects as distances among points in a low-
dimensional space. Multidimensional unfolding (Coombs 1964; Busing, Groenen, and Heiser
2005; Borg and Groenen 2005) is a related technique that represents input preference data
as distances (among individuals and objects) in a low-dimensional space. Nowadays, MDS
as well as unfolding problems are typically solved through numeric optimization. The state-
of-the-art approach is called SMACOF (Stress Majorization of a Complicated Function; De
Leeuw 1977) and provides the user with a great amount of flexibility for specifying MDS and
unfolding variants. Since the first publication of the smacof package R by De Leeuw and Mair
(2009b), several additional MDS and unfolding approaches as well as various extensions and
utility functions have been implemented; these extensions will be presented in this article.
We keep our elaborations fairly applied since the core technical details were provided in the
original publication.

The first part of this paper gives the reader the key ingredients of MDS, with a special focus
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Method (Argument) Conversion Formula

Correlation ("corr") δij =
√

1 − rij

Reverse ("reverse") δij = min(sij) + max(sij) − sij

Reciprocal ("reciprocal") δij = 1/sij

Membership ("membership") δij = 1 − sij

Rank orders ("ranks") δij = rank(−sij)
Exponential ("exp") δij = − log(sij/ max(sij))

Gaussian ("Gaussian") δij =
√

− log(sij/ max(sij))

Transition frequencies "transition") δij = 1/
√

fij

Co-occurrences ("cooccurrence") δij =

(

1 +
fij

∑

i,j
fij

∑

i
fij

∑

j
fij

)−1

Gravity ("gravity") δij =

√

∑

i
fij

∑

j
fij

fij

∑

i,j
fij

Confusion proportions ("confusion") δij = 1 − pij

Probabilities ("probability") δij = 1/
√

arcsin(pij)

Integer value z δij = z − sij

Table 1: Conversions of similarities into dissimilarities: similarities sij , correlations rij , fre-
quencies fij , proportions/probabilities pij .

on newly implemented dissimilarity transformation functions. This is followed by a section
on MDS goodness-of-fit assessment, including various ways of assessing the stability of a
solution. The incorporation of optimal scaling on the external variables, as presented in the
subsequent section, makes MDS an attractive tool for confirmatory research. What follows
next is a detailed presentation of the recently implemented unfolding function, which adds
great amounts of flexibility in model specification, compared to the original implementation.
Finally, several smaller additions such as Procrustes transformation, asymmetric MDS, gravity
MDS, unidimensional scaling, and MDS biplots are presented. Related R packages will be
mentioned in the respective sections.

2. SMACOF in a nutshell

MDS takes a dissimilarity matrix ∆ of dimension n × n with non-negative elements δij as
input. These dissimilarities can be either directly observed (e.g., in an experimental setting
a participant has to rate similarities between pairs of stimuli) or derived (e.g., by applying
a proximity measure on a multivariate data frame). If the data are collected or derived as
similarities sij , the sim2diss function supports users to convert them into dissimilarities δij .
Corresponding conversion formulas are given in Table 1.

SMACOF uses majorization (see De Leeuw and Mair 2009b, for details) to solve Kruskal’s
stress target (Kruskal 1964)

σ2(D̂, X) =
∑

i<j

wij(d̂ij − dij(X))2 → min! (1)

with
∑

i<j wij d̂2
ij = n(n−1)/2 as constraint. Here, wij denotes a non-negative a priori weight
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for δij which, by default, is 1. If a δij is missing, all functions in smacof set the corresponding
wij = 0 such that these entries are blanked out from optimization. Solving the stress target
results in an n × p matrix X of point coordinates located in a p-dimensional space (p fixed a
priori) with Euclidean distances

dij(X) =

√

√

√

√

p
∑

s=1

(xis − xjs)2.

The d̂ij ’s are the disparities (also called d-hats), collected in the n × n matrix D̂. Disparities
are optimally scaled dissimilarities. That is, a transformation admissible on the assumed scale
level (“measurement levels as functions”; see, e.g., Jacoby 1999) is applied. The first smacof

package incarnation offered two specification options only: metric or nonmetric. The new
package version implements the following bundle of transformation functions:

• Ratio MDS: d̂ij = bδij .

• Interval MDS: d̂ij = a + bδij .

• Ordinal MDS: d̂ij = f(δij) where f is a monotone step function. Approaches for tie
handling (i.e., in case of δij = δi′j′) are the following:

– Primary approach (“break ties”): does not require that d̂ij = d̂i′j′ .

– Secondary approach (“keep ties tied”): requires that d̂ij = d̂i′j′ .

– Tertiary approach: requires that the means of the tie blocks are in the correct
order.

• Monotone spline MDS: d̂ij = f(δij) where f is an I-spline (integrated spline) transfor-
mation (Ramsay 1988) for a fixed number of knots and a fixed spline degree.

Since dissimilarities are non-negative, these monotone transformations impose non-negativity
on the disparities as well.

A normalized stress version called stress-1 can be derived in order to make the stress inde-
pendent from the input dissimilarity magnitudes. Equation 1 is modified to

σ1(D̂, X) =

√

√

√

√

∑

i<j wij(d̂ij − dij(X))2

n(n − 1)/2
, (2)

Various functions of the package report this normalized stress value as output1.

To illustrate MDS with different types of transformation functions we use a simple dataset
from Guttman (1965). The data consist of an 8×8 matrix containing intercorrelations of eight
items in an intelligence test. First, we need to convert these similarities into dissimilarities as
all smacof functions operate on dissimilarities. Second, we fit four MDS versions and report
the corresponding stress values (normalized to stress-1).

R> library("smacof")

1From now on, whenever we say “stress”, we refer to “stress-1”.
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Loading required package: plotrix

Registered S3 methods overwritten by 'ggplot2':

method from

[.quosures rlang

c.quosures rlang

print.quosures rlang

Registered S3 methods overwritten by 'car':

method from

influence.merMod lme4

cooks.distance.influence.merMod lme4

dfbeta.influence.merMod lme4

dfbetas.influence.merMod lme4

Attaching package: 'smacof'

The following object is masked from 'package:base':

transform

R> idiss <- sim2diss(intelligence[,paste0("T", 1:8)]) ## convert correlation

R> fitrat <- mds(idiss) ## ratio MDS

R> fitint <- mds(idiss, type = "interval") ## interval MDS

R> fitord <- mds(idiss, type = "ordinal") ## ordinal MDS

R> fitspl <- mds(idiss, type = "mspline") ## spline MDS

R> round(c(fitrat$stress, fitint$stress, fitord$stress, fitspl$stress), 3)

[1] 0.227 0.080 0.015 0.070

Figure 1 shows the Shepard diagrams involving four different transformation functions. These
diagrams plot the observed dissimilarities δij against the fitted distances dij(X), and map the

disparities d̂ij into the point cloud (De Leeuw and Mair 2015).

The option to apply various dissimilarity transformations is one of the advantages of the
SMACOF framework compared to classical scaling (Torgerson 1952) as implemented in stats’
cmdscale. In smacof, these transformation functions are now also available for all kinds of
three-way MDS models (indscal and idioscal functions), as well as for confirmatory MDS
and unfolding, as described further below.

3. Tools for goodness-of-fit assessment

Mair, Borg, and Rusch (2016) give an extensive treatment of how to assess goodness-of-fit in
MDS. Here we present some recently implemented utility functions that support users with
this task.
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Figure 1: Shepard diagrams for four different dissimilarity transformations.

3.1. Configuration starting values

Optimizing the stress in Equation 1 through majorization leads to local minima problems since
the stress surface is generally bumpy. By default, smacof uses a classical scaling solution to
support the algorithm with a reasonable starting configuration. This is not necessarily the
best choice because it does not always lead to the lowest stress value. A common heuristic
strategy is to try out several random starting configurations, and pick the fit with the lowest
stress value.

To illustrate this approach, we use one of the classical MDS textbook datasets from Wish
(1971), containing similarity ratings for 12 countries, for which we fit a ratio MDS.
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R> WishD <- sim2diss(wish, method = 7) ## convert into dissimilarities

R> fitWish <- mds(WishD) ## fit ratio MDS

This leads to a stress of 0.2185. Now we fit 100 additional ratio MDS models based on
different random starts, and report the lowest stress value.

R> stressvec <- NULL

R> fitbest <- NULL

R> set.seed(123)

R> for(i in 1:100) {

+ fitran <- mds(WishD, init = "random")

+ stressvec[i] <- fitran$stress

+ if (i == 1) fitbest <- fitran

+ if (stressvec[i] < fitbest$stress) fitbest <- fitran

+ }

R> round(fitbest$stress, 4)

[1] 0.2178

This solution leads to a slightly lower stress value than the one obtained with a classical
scaling start. From a purely statistical point of view the user would normally decide to go
with this solution. However, from more of a substantive perspective, interpretability plays an
important role. For instance, there might a solution with a reasonably low stress value (but
not the lowest) which leads to better interpretability. This issue is studied in detail in Borg
and Mair (2017) who propose the following strategy (p. 21–22):

1. Run an MDS analysis with a set of different initial configurations (e.g., using many
random configurations).

2. Save all resulting MDS solutions and their fit indices.

3. Use Procrustean fitting (see Section 6.4) to eliminate all meaningless differences (i.e.,
differences not driven by the data) among the MDS solutions.

4. Compute the similarity of each pair of MDS configurations.

5. Analyze the similarity structure of the MDS configurations with two-dimensional MDS
(to visualize the similarity structure) or cluster analysis (to identify types of MDS
configurations).

6. For each type of MDS configuration with a reasonably low stress, plot one prototypical
MDS solution and check its interpretability.

7. Pick the MDS solution that is acceptable in terms of stress and is the best interpretation.

These steps are implemented in the icExplore function. Again, we fit 100 ratio MDS models
with random starts and save all fitted MDS objects (returnfit argument).
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Figure 2: Similarity structure of 100 MDS solutions. Each label corresponds to an MDS
solution. The size of the labels (and their color shading) is proportional to the stress.

R> set.seed(123)

R> icWish <- icExplore(WishD, nrep = 100, returnfit = TRUE)

R> plot(icWish, main = "IC Plot Wish")

Figure 2 shows the configuration plot of the 100 MDS solution based on random starts (cf.
Step 5). The larger the size of the label, the worse the MDS fit. Based on this plot the user
can extract various solutions that fit satisfactorily, plot the configurations, and interpret the
solutions.

3.2. Stress norms and permutation tests

Kruskal (1964, p. 3) says that “our experience with experimental and synthetic data suggests
the following verbal evaluation: 20% poor, 10% fair, 5% good, 2.5% excellent, 0% perfect”. In
subsequent years, these rules of thumb have been applied in a somewhat mechanical manner.
This is problematic for various reasons (see Mair et al. 2016; Borg, Groenen, and Mair 2018);
one of which is that the stress depends on n, as is obvious in Equation 1: the larger n, the
larger the stress2.

2In modern MDS applications researchers often have to scale a large number of objects.
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This issue was recognized in the early days of MDS. Throughout the 1970s various researchers
have studied this phenomenon by means of Monte Carlo simulations within the context of
ordinal MDS (see Spence and Young 1978, for an overview). These studies lead to the concept
of stress norms. The idea is to create random dissimilarities (e.g., by drawing from a uniform
U(0, 1) distribution) for a given n and p. This procedure is repeated many times such that
the average stress value and the standard deviation can be computed.

A corresponding implementation is provided by the function randomstress which allows
users not only to derive ordinal MDS norms, but also to obtain stress norms for other types
of MDS from Section 2. As an example, we use a dataset from Lawler (1967) who studied
the performance of managers. There are three traits (T1 = quality of output, T2 = ability to
generate output, T3 = demonstrated effort to perform), and three methods (M1 = rating by
superior, M2 = peer rating, M3 = self-rating). We start the stress norm analysis by fitting a
2D ratio MDS model:

R> LawlerD <- sim2diss(Lawler, to.dist = TRUE)

R> fitLaw <- mds(LawlerD)

This leads to a stress of 0.2415. Let us explore the random stress value for this example
(n = 9, p = 2; 500 replications):

R> set.seed(123)

R> rstress <- randomstress(n = attr(LawlerD, "Size"), ndim = 2, nrep = 500,

+ type = "ratio")

This function call returns a vector of 500 stress values. Let x̄r denote the average random
stress value and σr the standard deviation. The default in the random stress literature (see
e.g. Spence and Ogilvie 1973) is to use x̄r − 2σr as lower bound: if the observed stress is
smaller than this lower bound, the stress can be considered as “significant”.

R> lbound <- mean(rstress) - 2*sd(rstress)

R> round(lbound, 4)

[1] 0.2195

In our example the stress of 0.2415 from the original MDS fit is above this threshold. This
suggests a “non-significant” result (the 2D ratio MDS solution does not fit satisfactorily).

There are several issues associated with such random stress norms. First, as Spence and
Ogilvie (1973) point out, the dispersion of the random stress norms is in general very small.
In most practical applications the strategy applied above rarely leads to “non-significant”
results; our example is somewhat of an exception. Second, apart from n and p, other circum-
stances such as the error in the data, missing values, as well as ties affect the stress (Mair
et al. 2016; Borg and Groenen 2005). Third, the benchmark is based on completely random
configurations. Real-life data almost always have some sort of structure in it such that the
random stress strategy leads to “significant” results in most cases.

Instead of generating random dissimilarities, permutation tests can be used, as formalized in
Mair et al. (2016). They lead to “sharper” tests than random null configurations. There are
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two scenarios for setting up a permutation scheme. First, in the case of directly observed
dissimilarities the elements in ∆ can be permuted. For each permutation sample an MDS
model of choice is fitted. By doing this many times it results in a null distribution of stress
values. Second, for derived dissimilarities, Mair et al. (2016) propose a strategy for systematic
column-wise permutations (one variable at a time). This permutation scheme gives a more
informative null distribution compared to full column-wise permutations. For each permuta-
tion sample a dissimilarity matrix is computed, and an MDS fitted. Again, this gives a stress
distribution under the H0 of little departure from complete exchangeability of dissimilarities
in the data-generating process.

Let us illustrate both permutation scenarios. For directly observed dissimilarities we continue
with the Lawler example from above (500 permutations):

R> set.seed(123)

R> permLaw <- permtest(fitLaw, nrep = 500, verbose = FALSE)

R> permLaw

Call: permtest.smacof(object = fitLaw, nrep = 500, verbose = FALSE)

SMACOF Permutation Test

Number of objects: 9

Number of replications (permutations): 500

Observed stress value: 0.241

p-value: 0.294

We cannot reject the H0 of “stress/configuration are obtained from a random permutation of
dissimilarities”. For the derived dissimilarity situation we use a dataset from McNally, Robin-
augh, Wu, Wang, Deserno, and Borsboom (2015) which is included in the MPsychoR package
(Mair 2018b). It includes 17 posttraumatic stress disorder (PTSD) symptoms reported by
survivors of the Wenchuan earthquake in 2008, scaled on a 5-point rating scale. We use the
Euclidean distance as (derived) dissimilarity measure and compute an interval MDS. This
leads to the following stress value:

R> data(Wenchuan, package = "MPsychoR")

R> Wdelta <- dist(t(Wenchuan))

R> fitWen <- mds(Wdelta, type = "interval")

R> round(fitWen$stress, 4)

[1] 0.1838

In the following permtest call we provide the raw input data through the data argument.
This way the function knows that the permutations should be performed on the raw data
rather than on ∆. We also need to tell the function which dissimilarity measure we used
above before fitting the MDS. We perform 1000 replications.
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Figure 3: Left panel: ECDF of the permuted stress values (dashed gray line at α = 0.05,
solid gray line at the p-value). Right panel: permutation stress histogram (red dashed line at
critical value, solid black line at observed stress value).

R> set.seed(123)

R> permWen <- permtest(fitWen, data = Wenchuan, method.dat = "euclidean",

+ nrep = 1000, verbose = FALSE)

R> permWen

Call: permtest.smacof(object = fitWen, data = Wenchuan, method.dat = "euclidean",

nrep = 1000, verbose = FALSE)

SMACOF Permutation Test

Number of objects: 17

Number of replications (permutations): 1000

Observed stress value: 0.184

p-value: <0.001

This time we reject H0. Figure 3, obtained by calling plot(permWen), visualizes the results in
two ways: the left panel shows the empirical cumulative distribution function (ECDF) of the
permutation stress values, whereas the right panel shows the permutation stress histogram
including the critical value (lower 5% quantile) and the observed stress value.

Note that such permutation strategies can be applied to unfolding models (see Section 5) as
well (see Mair et al. 2016, for details).

3.3. Stability of a solution I: jackknife
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De Leeuw and Meulman (1986) developed a jackknife strategy for MDS in order to examine
the stability of a solution. Their approach, implemented in the jackknife function, computes
i = 1, . . . , n additional solutions with configurations Xi (object i being left out). Note that
each Xi has row i missing and has therefore n − 1 rows in total. To make the Xi’s compa-
rable, the location of the missing point is estimated by minimizing a least squares problem,
and subsequently transformed using Procrustes with X as target. Let us denote the result-
ing configurations by X∗

i , each of them of dimension n × p. From these configurations the
average (centroid) jackknife solution X̄∗ can be computed. Thus, we have n + 2 comparable
configurations in total which can be represented in a single plot, as shown below.

De Leeuw and Meulman (1986) also introduced various measures related to the jackknife
solution. The first one is a stability measure and is computed as follows:

ST = 1 −
∑n

i=1 ‖X∗
i − X̄∗‖2

∑n
i=1 ‖X∗

i ‖2
. (3)

ST can be interpreted as the ratio of between and total variance. To measure the cross-
validity, that is, comparing the “predicted” configuration of object i as the i-th row in X̄∗

with the actual configuration (i-th row in X),

CV = 1 − n‖X − X̄∗‖2

∑n
i=1 ‖X∗

i ‖2
(4)

can be used. Finally, the dispersion around the original solution X can be expressed as

DI =
1

n

n
∑

i=1

‖X∗
i − X‖2

=
1

n

n
∑

i=1

‖X∗
i − X̄∗‖2 + ‖X − X̄∗‖2

= 2 − (ST + CV ).

The dataset we use to illustrate the jackknife MDS is from McNally, Mair, Mugno, and
Riemann (2017), included in the MPsychoR package. Below we scale 16 depression symptoms
reported by patients using the Quick Inventory of Depressive Symptomatology (QIDS-SR).
We fit a 2D ordinal MDS on the Euclidean distance input matrix, subject to an MDS jackknife.

R> data(Rogers, package = "MPsychoR")

R> RogersSub <- Rogers[,1:16]

R> RogersD <- dist(t(RogersSub))

R> fitRogers <- mds(RogersD, type = "ordinal")

R> jackRogers <- jackknife(fitRogers)

R> jackRogers

Call: jackknife.smacofB(object = fitRogers)

SMACOF Jackknife

Number of objects: 16
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Figure 4: Jackknife MDS plot. The labels are positioned at the original point coordinates,
the stars represent the resampled solutions with the jackknife centroid at the center.

Value loss function: 0.3444

Number of iterations: 12

Stability measure: 0.998

Cross validity: 1

Dispersion: 0.002

R> plot(jackRogers)

The print output shows the jackknife measures reported above. Figure 4 shows the jackknife
MDS plot. The labels are placed at X. The center of the stars denote the jackknife centroids,
the rays the n − 1 jackknife solutions. The results suggests that the solution is very stable.

Further options for using jackknife in MDS are presented in Vera (2017) where the distances
are subject to stability analysis.

3.4. Stability of a solution II: bootstrap

Bootstrap approaches for stability assessment in MDS were proposed by Meulman and Heiser
(1983), Heiser and Meulman (1983), and Weinberg, Carroll, and Cohen (1984), and further
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refined by Jacoby and Armstrong (2014). The smacof implementation resamples the original
data and therefore works for derived dissimilarities only. The confidence ellipsoids are com-
puted as follows. Let xi denote the row coordinates of object i from the original configuration
X. Let Si be the p × p covariance matrix of the bootstrapped solutions of object i. The
100(1 − α)% confidence ellipsoid for object i is determined by the points zj for which

(zj − xi)S
−1
i (zj − xi)

′ = χ2(α; p), (5)

where χ2(α; p) is the α-quantile of the χ2-distribution with df = p. In R, this computation
can be easily achieved using the ellipse package (Murdoch and Chow 2018). As a stability
measure, we can use a slight modification of Equation 3:

ST = 1 −
∑N

l=1 ‖X∗
l − X̄∗‖2

∑N
l=1 ‖X∗

l ‖2
. (6)

N denotes the number of bootstrap replications, X∗
l the configuration of the l-th replication,

X̄∗ the bootstrap centroid configuration. Again, ST reflects a between/total variance ratio
and can be used to compare various MDS solutions against each other (Heiser and Meulman
1983). For instance, one could compare an unrestricted solution with a restricted solution
(see Section 4). The larger ST , the more stable the solution.

Let us apply the corresponding bootmds function on the Rogers data. We use N = 500
bootstrap replications.

R> set.seed(123)

R> bootRogers <- bootmds(fitRogers, RogersSub, method.dat = "euclidean",

+ nrep = 500)

R> bootRogers

Call: bootmds.smacofB(object = fitRogers, data = RogersSub, method.dat = "euclidean",

nrep = 500)

SMACOF Bootstrap:

Number of objects: 16

Number of replications: 500

Mean bootstrap stress: 0.1179

Stress percentile CI:

2.5% 97.5%

0.0974 0.1433

Stability coefficient: 0.9631

In addition to the stability coefficient, the function also reports the stress averaged across
bootstrap samples, including the a 95% confidence interval (bootstrap percentile).

R> plot(bootRogers)
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Figure 5: Bootstrap MDS plot with 95% confidence ellipsoids.

Figure 5 shows the resulting bootstrap configuration with the confidence ellipsoids. There is
a fair amount of instability associated with the sleep-onset insomnia item (labeled “onset”).

3.5. Stability of a solution III: pseudo-confidence ellipses

Ramsay (1977, 1982) incorporated MDS into a parametric (log-)normal framework with
maximum-likelihood estimation. This idea makes it easy to derive confidence ellipsoids around
the points in the configuration. De Leeuw (2019) achieved similar ellipsoids without any dis-
tributional assumptions, based on stress derivatives. This approach works for symmetric MDS
solutions as well as for individual difference models (INDSCAL, IDIOSCAL) of arbitrary di-
mensions. In its current form, it is limited to ratio transformations only. Expressions for
stress derivatives can be found in the corresponding paper.

Let us use the same dataset as above and fit a ratio MDS. The confEllipse function computes
the stress derivatives and subsequently the confidence ellipsoids.

R> fitRogers2 <- mds(RogersD)

R> confRogers <- confEllipse(fitRogers2)

The following plot function takes this object and produces the configuration plot with the
ellipsoids. Of importance is the eps argument which we set to 0.01 below. This value implies
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that that we look at a perturbation region where stress is at most 1% larger than the minimum
we have found. Figure 6 shows the corresponding configuration plot.

R> plot(confRogers, eps = 0.01, ylim = c(-0.11, 0.11),

+ ell = list(lty = 1, col = "gray"))
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Figure 6: Pseudo-confidence ellipses for ratio MDS solution.

Note that the scales along the axes differ from the ones in Figure 5 and Figure 4 (apart from
the fact that ratio MDS is used) since the SMACOF engine for estimating the solution the
confidence ellipsoids are based on normalizes the coordinates differently (see De Leeuw 2019,
for details).

4. MDS with optimal scaling on external predictors

Another advantage of the SMACOF framework compared to classical MDS is the option to fit
restricted MDS variants. There are two basic strategies to constrain an MDS configuration.
The first option involves internal constraints where the points are forced to be located on a
geometric shape. For the particular case of a sphere this can be achieved using smacofSphere.
The corresponding theory was described in De Leeuw and Mair (2009b). The only spherical
update since the original publication has been the incorporation of various types of dissimi-
larity transformations in smacofSphere.
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Here we focus on a second strategy, that is, imposing external constraints on the configuration
in the tradition of De Leeuw and Heiser (1980), Borg and Lingoes (1980), and Heiser and
Meulman (1983). The simplest form of such a restriction is a linear restriction

X = ZC, (7)

directly incorporated into the stress formula given in (1). Z is a known covariate matrix of
dimension n × q with number of covariates q ≥ p. C is a q × p matrix of regression weights
to be estimated, subject to potential additional restrictions, as outlined below.

For practical purposes, however, this basic implementation is of limited use. For instance,
specifying a 2 × 2 ANOVA design in Z collapses point coordinates to four points only in a 2D
configuration. What makes the external restriction concept attractive in practice is to apply
an additional optimal scaling step on the external scales within each majorization iteration.
Equation 7 changes to

X = ẐC. (8)

Each predictor variable z1, . . . , zq is subject to an optimal scaling transformation. The most
popular option is to scale these vectors in an ordinal way (i.e., using monotone regression), but
other transformations such as interval or splines (with or without monotonicity constraints)
that are all implemented smacof, can be considered as well. Note that these transformations
are independent from the monotone dissimilarity transformations (see Section 2)

Let us illustrate such a constrained MDS using a dataset taken from Engen, Levy, and Schlos-
berg (1958) on facial expressions (see also Heiser and Meulman 1983). Participants had to
rate proximities of 13 facial expressions, resulting in the dissimilarity matrix ∆. Rating scale
values were collected by Abelson and Sermat (1962) for the dimensions “pleasant-unpleasant”
(PU), “attention-rejection” (AR), and “tension-sleep” (TS). They constitute the matrix Z.
We start this example by fitting an unrestricted ordinal MDS. Note that for illustration
purposes we remove the object labels in ∆.

R> Delta <- FaceExp

R> attr(Delta, "Labels") <- NULL ## remove object labels

R> fitFace <- mds(Delta, type = "ordinal") ## fit ordinal MDS

This unrestricted ordinal solution leads to a stress value of 0.106.

Now we incorporate the covariate restrictions. For simplicity, we focus on PU and TS only, for
which we perform an ordinal transformation. In both cases we use the primary approach to ties
(default). In the first model we restrict C to be diagonal. Note that for the diagonal restriction
the number of dimensions is determined by the number of covariates (i.e., q = p), since each
covariate defines an axis (dimension). Also, we use the configuration from the unrestricted
model as starting configuration. It is important that the user provides a reasonable starting
configuration for the constrained MDS computation; using the one from an unrestricted fit is
a good option in general. The constrained MDS model (ordinal dissimilarity transformation,
ordinal covariate transformation, diagonal regression weights restriction) can be fitted as
follows:

R> Z <- FaceScale[, c(1,3)] ## select PU and TS as covariates

R> fitFaceC1 <- smacofConstraint(Delta, type = "ordinal",
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Figure 7: Transformation plots for external variables (original scores on the x-axis, trans-
formed scores on the y-axis).

+ constraint = "diagonal", external = Z, constraint.type = "ordinal",

+ init = fitFace$conf)

Naturally, the stress of 0.159 is larger than the one of the unrestricted solution.

Before we focus on the interpretation, let us have a look at the optimal scaling transformations
performed on the external scales. Figure 7 shows the monotone regression fits for PU and
TS.

The resulting MDS configuration, produced with plot(fitFaceC1), is given in Figure 8. The
x-axis corresponds to the PU dimension, the y-axis to the TS dimension. This is due to the
diagonal restriction in C which simply performs dimensional weighting.

R> fitFaceC1$C

[,1] [,2]

[1,] -1.03439 0.000000

[2,] 0.00000 -1.079515
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Figure 8: Face expression constraint MDS configuration.

Another important aspect of this solution is that the order of the external covariates, that is,

R> order(Z[,1], decreasing = TRUE) ## point order PU (x-axis)

[1] 3 9 4 8 2 13 1 6 5 10 11 7 12

R> order(Z[,2], decreasing = TRUE) ## point order TS (y-axis)

[1] 12 7 3 6 8 11 9 10 2 1 4 5 13

is maintained along the x-axis (PU) and along the y-axis (TS) of Figure 8.

Next we modify this model in two ways. In the first variant, instead of applying a mono-
tone transformation on the covariates, we use an interval transformation, while keeping the
diagonal restriction in C intact.

R> fitFaceC2 <- smacofConstraint(Delta, type = "ordinal",

+ constraint = "diagonal", external = Z, constraint.type = "interval",

+ init = fitFace$conf)

R> round(fitFaceC2$stress, 3)

[1] 0.183
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In the following second variant we relax the diagonal restriction in C, while going back to the
ordinal transformation of the external variables.

R> fitFaceC3 <- smacofConstraint(Delta, type = "ordinal",

+ constraint = "linear", external = Z, constraint.type = "ordinal",

+ init = fitFace$conf)

R> round(fitFaceC3$stress, 3)

[1] 0.143

R> fitFaceC3$C ## C unrestricted

D1 D2

[1,] -1.1773603 -0.3506116

[2,] 0.4328479 -1.7390260

Note that the extension with the interval transformation is more restrictive than the original
constrained MDS from above because, instead of the step function in Figure 7, we perform a
linear transformation. The second extension is less restrictive than the original constrained
MDS since C is unrestricted. This is reflected in the magnitudes of the corresponding stress
values.

R> plot(fitFaceC2, xlab = "Pleasant-Unpleasant", ylab = "Tension-Sleep",

+ main = "Face Expression (Interval Transformation)")

R> plot(fitFaceC3, main = "Face Expression (Linear Restriction)")

Figure 9 shows the configurations of these two versions. In the left panel we still have the
same dimensional PU-TS interpretation as above. However, the difference is that the points
along the x-axis and y-axis are linearly transformed (interval). Thus, the relative distance
between two points on the original scale is perceived on the transformed level. In the right
panel the dimensional interpretation no longer holds since C is not diagonal: the solution
is rotated/reflected followed by dimensional stretching. By applying an SVD on C the user
can get the rotation matrices (see Borg and Groenen 2005, p. 232, for details). Note that
abandoning the diagonal restriction gives us the opportunity to include additional covariates
(i.e., no p = q restriction) since the axes are no longer defined by the covariates.

5. Unfolding

As mentioned in the introduction, one of the major updates since the first publication of the
package was a complete re-implementation of the unfolding function. This update gives the
user the possibility to apply the usual transformations on the dissimilarities, to incorporate
circular restrictions, and to fit row-conditional and external unfolding models.

5.1. Unfolding theory

Unfolding takes a rectangular dissimilarity matrix ∆ of dimension n × m with elements δij

(i = 1, . . . , n and j = 1, . . . , m) as input. Such data are most often rankings or ratings. The
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Figure 9: Left panel: interval covariate transformation, diagonal restriction in C. Right
panel: ordinal covariate transformation, linear restriction in C.

stress from Equation 1 changes to

σ2(D̂, X1, X2) =
n
∑

i=1

m
∑

j=1

wij(d̂ij − dij(X1, X2))2, (9)

with the fitted Euclidean distances (p-dimensional space) expressed as

dij(X1, X2) =

√

√

√

√

p
∑

s=1

(x1is − x2js)2. (10)

X1 is an n × p matrix (row configuration), X2 an m × p matrix (column configuration), and
D̂ the n × m matrix of disparities. Again, the weights wij and the dissimilarities δij must be
non-negative.

In terms of stress normalization, Borg and Groenen (2005, Section 11.1) argue that one could
find an optimal dilation factor that multiplies both the row and column coordinates by the
same constant. If one would do so, then the absolute coordinates change, but not the relative
ones. If one finds this optimal dilation constant that minimizes stress, then the resulting
stress value can be written as

σ1(D̂, X1, X2) =

√

√

√

√

1 −∑

i,j(wij d̂ijdij(X1, X2))2

∑

i,j wij d̂2
ij

∑

i,j wijd2
ij(X1, X2)

. (11)

This expression provides a short cut to compute the stress-1 value if we would allow for
an optimal dilation constant. At the same time it is a trick for interpretation in terms of
the well known stress-1 value after all the majorization computations are done. Details on



Patrick Mair, Jan de Leeuw, Patrick J. F. Groenen 21

the majorization approach in the case of ratio transformations are given in (De Leeuw and
Mair 2009b). Below we elaborate on a modification that is able to handle general monotone
dissimilarity transformations from Section 2.

5.2. Transformation functions

Early versions of nonmetric multidimensional unfolding (i.e., ordinal transformation) are de-
scribed in Coombs (1964). Busing et al. (2005) elaborate in detail on the challenges of
including transformation functions in unfolding with respect to optimization. One major
problem is degeneracy of the solution due to equal disparities. They suggest that one penal-
izes the stress by the coefficient of variation, which moves the algorithm away from solutions
with small variation in the fitted distances. The corresponding badness-of-fit target is called
p-stress:

σ2
p(D̂, X1, X2) = σ2λ(D̂, X1, X2)µ(D̂). (12)

The coefficient of variation ν(D̂) is calculated on the basis of the disparities and enters the
penalty term as follows:

µ(D̂) = 1 +
ω

ν(D̂)
. (13)

Obviously this penalty term acts as a multiplicative factor in Equation 12. As ν(D̂) decreases,
the p-stress penalization increases.

Furthermore, there are two tuning parameters involved in this p-stress setup:

• λ ∈ (0; 1] is a lack-of-penalty parameter that controls the influence of penalty term: the
larger λ, the smaller the penalty influence.

• ω acts as range parameter in the penalty term: for a small ω the penalty is especially
effective if ν(D̂) is small.

The defaults for these tuning parameters used in unfolding are λ = 0.5 and ω = 0.1 which,
in most practical situations, turn out to be a good choice3. The p-stress target can be
minimized using majorization, for which the details are given in Busing et al. (2005). From a
practical point of view, after obtaining a p-stress optimized solution, users can consider the
normalized stress from Equation 11 as goodness-of-fit index4. Note that all the dissimilarity
transformation functions from MDS (i.e., ratio, interval, ordinal, spline; cf. Section 2) are
implemented for unfolding as well.

Let us provide an example of an ordinal unfolding solution. We use a dataset from Dabic
and Hatzinger (2009), available in the prefmod package (Hatzinger and Dittrich 2012), where
individuals were asked to configure a car according to their preferences. They could choose
freely from several modules such as exterior and interior design, technical equipment, brand,
price, and producing country. We use only the first 100 individuals.

R> library("prefmod")

R> carconf1 <- carconf[1:100, 1:6]

R> head(carconf1)

3Personal communication with Frank Busing.
4For details on how to assess the goodness-of-fit of an unfolding solution see Mair et al. (2016).
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price exterior brand tech.equip country interior

1 3 2 5 6 4 1

2 4 1 5 2 6 3

3 6 3 2 5 4 1

4 1 4 2 3 6 5

5 NA 2 4 NA 3 1

6 NA 2 4 3 NA 1

Since not all individuals ranked all objects, we have the situation of “partial rankings”. The
unfolding function specifies a proper weight matrix W automatically: wij = 0 if δij is
missing; wij = 1 otherwise. This way, the corresponding missing dissimilarities are blanked
out from the optimization. For the ordinal unfolding model we are going to fit, this weight
matrix can be extracted using unf_ord$weightmat.

R> unf_ord <- unfolding(carconf1, type = "ordinal") ## fit ordinal unfolding

R> unf_ord

Call: unfolding(delta = carconf1, type = "ordinal")

Model: Rectangular smacof

Number of subjects: 100

Number of objects: 6

Transformation: ordinalp

Conditionality: matrix

Stress-1 value: 0.194295

Penalized Stress: 0.98165

Number of iterations: 657

This call prints out the stress-1 value as well as the final p-stress value. The configuration
plot and Shepard diagram shown in Figure 10 can be produced as follows:

R> plot(unf_ord, main = "Unfolding Configuration Car Preferences")

R> plot(unf_ord, plot.type = "Shepard",

+ main = "Shepard Diagram Car Preferences")

The Shepard diagram shows the ordinal transformation of the input dissimilarities, whereas
the configuration plot maps the row and column coordinates into a joint space, which makes
distances between any pair of points interpretable.

5.3. Row-conditional unfolding

The solution above is an unconditional (also called matrix-conditional) unfolding solution
since a single transformation function is estimated that applies to all individuals. The ranks
are compared unconditionally which, in some situations, is a fairly restrictive assumption.
For instance, in our example it might be the case that individual i is quite indifferent to all
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Figure 10: Left panel: unfolding configuration of car preference data. Right panel: Shepard
diagram car preference data (ordinal transformation).

car characteristics, but still ranks them. Individual i′, however, could have strong preferences
but might end up with the same ranking as individual i. Treating these ranks as equal is a
strong assumption. Similarly, for rating data in ∆, individual i’s rating of, for instance, 2 is
assumed to be equal to any other individual’s rating of 2.

Row-conditional unfolding relaxes this assumption by estimating separate transformation
functions for each individual (i.e., for each row in ∆). Technically, what changes with respect
to the p-stress expression in Equation 12 is the penalty term. Busing et al. (2005) suggest to
use the harmonic mean for row-wise aggregation of the penalty components which modifies
Equation 13 to

µc(D̂) = 1 +
ω

(

1

n

∑n
i=1 ν−2(d̂i)

)−1
. (14)

The d̂i’s are the row vectors in D̂. The raw stress term in Equation 12 remains unadjusted
since it is additive over the rows.

Let us fit a row-conditional version of the ordinal unfolding on the car characteristics data. We
use the final configuration obtained above as starting configuration. Note that for computa-
tional reasons we provide a slightly more generous convergence boundary ε than the default5.
In general, we recommend to increase the number of iterations using the itmax argument, if
needed. For a reasonably large sample size it can take a while until the algorithm converges.
A parallelized fit can be evoked through the parallelize argument.

R> startconf <- list(unf_ord$conf.row, unf_ord$conf.col)

R> unf_cond <- unfolding(carconf1, type = "ordinal", conditionality = "row",

5In the t-th iteration the convergence criterion used in unfolding is
2(σp(X1, X2)(t−1)

− σp(X1, X2)(t)) ≤ ε(σp(X1, X2)(t−1) + σp(X1, X2)(t) + 10−15) .
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+ eps = 6e-5, init = startconf)

R> unf_cond

Call: unfolding(delta = carconf1, type = "ordinal", conditionality = "row",

init = startconf, eps = 6e-05)

Model: Rectangular smacof

Number of subjects: 100

Number of objects: 6

Transformation: ordinalp

Conditionality: row

Stress-1 value: 0.075335

Penalized Stress: 9.525695

Number of iterations: 5196

Compared to the unconditional fit, the row-conditional version clearly reduced the stress-1.
Figure 11 shows the resulting configuration plot in the left panel. The Shepard diagram in
the right panel nicely illustrates the difference between unconditional and row-conditional
unfolding. While in unconditional unfolding we fitted a single transformation function only
(see right panel of Figure 10), in row-conditional unfolding each individual gets its own trans-
formation function. Since we have missings in our data, not all individuals have the full
six-ranking monotone trajectories.

R> plot(unf_cond, main = "Conditional Unfolding Configuration Car Preferences")

R> plot(unf_cond, plot.type = "Shepard",

+ main = "Shepard Diagram Car Preferences", col.dhat = "gray")

Some practical suggestions on when to use row-conditional unfolding as opposed to uncondi-
tional unfolding are given in Borg et al. (2018, p. 100).

5.4. Spherical unfolding

Sometimes it is of interest to restrict either row coordinates or column coordinates to be on a
geometric shape such as a sphere. Technically, this implies that within each iteration the row
(or column) coordinates have to be spherically restricted. Let us elaborate on this restriction
for the row coordinates in X := X1 for p = 2 (for the column coordinates in X2 it works in
an analogous fashion). Each row vector xi can be expressed in polar coordinates (see Cox
and Cox 1991):

xi = (ri cos(θi), ri sin(θi))
′,

with θi as the corresponding angle and ri as the radius. We aim to find a circular restricted
configuration Xc for which the row vectors have polar coordinates

xc,i = (r cos(θc,i), r sin(θc,i))
′.
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Figure 11: Left panel: row-conditional unfolding configuration of car preference data. Right
panel: Shepard diagram (ordinal transformation) row-conditional unfolding.

We have a single radius r and the corresponding angle θc,i. To compute Xc, we want to
minimize the quadratic part of the majorizing function:

‖X − Xc‖2 = ‖X‖2 + ‖Xc‖2 − 2 × trace(X′
cX)

= ‖X‖2 + nr2 − 2 × trace(X′
cX)

= ‖X‖2 + nr2 − 2
n
∑

i=1

r × ri(cos(θc,i) cos(θi) + sin(θc,i) sin(θi))

In the last term, the best θci
that can be chosen is the one that maximizes cos(θc,i) cos(θi) +

sin(θc,i) sin(θi). This implies choosing θc,i = θi so that

cos(θc,i) cos(θi) + sin(θc,i) sin(θi) = cos2(θc,i) + sin2(θi) = 1.

Substituting the optimal θc,i = θi gives

‖X − Xc‖2 = ‖X‖2 + nr2 − 2r
n
∑

i=1

ri.

Setting the first derivative equal to zero yields the update

r =
1

n

n
∑

i=1

ri.

This simple expression gives us the optimal circular projection of the row coordinates in X.
As mentioned above, the same steps can be carried out for the column coordinates (X := X2;
replace i by j, and n by m in these equations).
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Figure 12: Left panel: unrestricted unfolding configuration of personal values. Right panel:
circular unfolding solution personal values (circle superimposed).

To illustrate an unfolding solution where we restrict the column coordinates to be on a
circle, we use a dataset from personality research by Borg, Bardi, and Schwartz (2017).
The data are derived from the Schwartz Value Survey (SVS). They were centered (row-
wise) and converted from preferences into dissimilarities, hence representing a rectangular
dissimilarity matrix ∆ with 327 persons and 10 variables referring to Schwartz’ psychological
values: power, achievement, hedonism, stimulation, self-direction, universalism, benevolence,
tradition, conformity, and security. We fit two (ratio) unfolding solutions: an unrestricted
one and one with circular restrictions on the column coordinates (values):

R> unf_vals <- unfolding(indvalues) ## unrestricted

R> unf_valsc <- unfolding(indvalues, circle = "column") ## restricted

Comparing the stress values we get 0.171 for the unrestricted solution, and 0.179 for the
restricted solution. This suggests that the circular solution is basically as good as the unre-
stricted one.

The reason for this becomes obvious by looking at the configuration plots in Figure 12. The
unrestricted solution in the left panel suggests that the personal values approximate a circle,
as suggested by Schwartz’ value theory. The configuration in the right panel results from
forcing the psychological values to be arranged on a circle.

5.5. External unfolding

External unfolding uses fixed coordinates for either the rows or the columns. Early references
are Srinivasan and Shocker (1973), Rodgers and Young (1981), and DeSarbo and Rao (1984).
Within each iteration either the row coordinates in X1 (in case of fixed coordinates denoted
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as F1), or the column coordinates in X2 (in case of fixed coordinates denoted as F2) need to
be constrained and scaled. The scaling factors for fixed rows and fixed columns, respectively,
are

s1 =
trace(F′

1X1)

‖F1‖ ,

s2 =
trace(F′

2X2)

‖F2‖ .

Based on these scaling factors the updated coordinates are X1 := s1F1 in case of row re-
strictions, or X2 := s2F2 in case of column restrictions. Using this adjustment the new
coordinates are properly scaled with respect to the unconstrained column/row coordinates,
while maintaining the specified shape constraints.

To illustrate, we use once more a dataset from Borg et al. (2017). This time we use the results
from the Portrait Value Questionnaire (PVQ). Its a questionnaire of 40 items assessing how
persons rate the personal importance of ten basic values: power (PO), achievement (AC),
hedonism (HE), stimulation (ST), self-direction (SD), universalism (UN), benevolence (BE),
tradition (TR), conformity (CO), security (SE) on a scale from 0 to 6. We use an aggregated
version where the item scores belonging to the same psychological value are averaged. As
fixed coordinates we use the following value circle coordinates:

R> tuv <- matrix(NA, nrow = ncol(PVQ40agg), ncol = 2)

R> alpha <- -360/10

R> for (i in 1:10){

+ alpha <- alpha+360/10

+ tuv[i,1] <- cos(alpha*pi/180)

+ tuv[i,2] <- sin(alpha*pi/180)

+ }

This specification is different from the spherical unfolding since here we fix the value coor-
dinates on the circle (equidistant) instead of just forcing them to be aligned on a circle. Of
course, in external unfolding we can specify any arbitrarily fixed configuration; it does not
have to be a circle.

Below we fit two solutions: an unconstrained ordinal unfolding solution, and a constrained
ordinal unfolding solution with fixed circular column coordinates. Since smaller responses in
the PVQ data reflect larger dissimilarities, we reverse the category scores.

R> delta <- (max(PVQ40agg) + 1) - PVQ40agg

R> unf_pvq <- unfolding(delta, type = "ordinal") ## unconstrained

R> unf_pvqext <- unfolding(delta, type = "ordinal",

+ fixed = "column", fixed.coord = tuv) ## constrained

The stress value of the unconstrained solution is 0.162, whereas the one for the external so-
lution is 0.217, which is clearly larger. The plots given in Figure 13 reflect the corresponding
differences in the configurations. The unrestricted solution clearly deviates from the theoret-
ical circle.
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Figure 13: Left panel: unrestricted unfolding solution. Right panel: externally restricted
unfolding solution (fixed circular coordinates for personal values).

5.6. Vector model of unfolding

The vector model of unfolding (VMU) goes back to Tucker (1960). It is basically a principal
component analysis (PCA) on the transposed input similarity matrix P. After a singular value
decomposition P′ ≈ UΣV′ for given dimensionality p, the row coordinates are obtained by
X1 =

√
m − 1UΣ, and the column coordinates by X2 =

√
m − 1V.

We apply the VMU on the unreversed PVQ data from above, since the inputs have to be
similarities. Note that, by default, the vmu function does an internal row-wise centering of
the data.

R> fit_vmu <- vmu(PVQ40agg) ## VMU fit

R> fit_vmu

Call: vmu(delta = PVQ40agg)

Number of subjects: 151

Number of objects: 10

Number of dimensions: 2

Variance accounted for: 66.21%

The results can be visualized using a biplot, where the row scores are represented as preference
vectors (see Figure 14).

R> plot(fit_vmu, cex = c(1, 0.7))
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Figure 14: VMU biplot portrait value questionnaire.

Note that ordinal versions of VMU amount to fitting an ordinal PCA (PRINCALS; De Leeuw
and Mair 2009a).
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6. Other MDS variants and utilities

6.1. Unidimensional scaling

Unidimensional scaling can be applied in situations where one has a strong reason to believe
that there is only one underlying dimension, such as time, ability, or preference. Even though
unidimensional scaling can be considered as a special case of MDS, it is generally discussed
separately (Mair and De Leeuw 2015) since the local minimum problem becomes serious if
mds is used with ndim = 1. The smacof package provides a simple implementation where all
possible n! dissimilarity permutations are considered for scaling, and the one which leads to
a minimal stress is returned. Obviously, this strategy is applicable only to a small number of
objects.

In the following example we examine seven works by Plato. The chronological order of Plato’s
works is unknown. Scholars only know that “Republic” was his first work, and “Laws” his
last work. The input dissimilarities are derived according to the following strategy. Cox and
Brandwood (1959) extracted the last five syllables of each sentence. Each syllable is classified
as long or short which gives 32 types. Based on this classification a percentage distribution
across the 32 scenarios for each of the seven works can be computed, subject to a Euclidean
distance computation.

R> PlatoD <- dist(t(Plato7))

R> fitPlato <- uniscale(PlatoD, verbose = FALSE) ## unidimensional fit

R> round(sort(fitPlato$conf), 3)

Critias Republic Timaeus Sophist Politicus Philebus Laws

-0.903 -0.599 -0.335 -0.060 0.373 0.656 0.869

The last line prints the 1D “time” configuration of Plato’s works that lead to the lowest stress
value.

6.2. Gravity model

The idea of the gravity model goes back Newton’s law of universal gravitation where he
states that force is proportional to the product of the two masses, and inversely proportional
to the square of the distance between them. Haynes and Fotheringham (1984) present a
wide range of statistical applications of this gravity concept with special emphasis on spatial
interactions. Within an MDS context, the gravity model turns out to be especially useful for
text co-occurrence data (Mair, Rusch, and Hornik 2014; Borg et al. 2018) in order to avoid
that words with high co-occurrences dominate the solution. Note that the sim2diss function
already includes a basic gravity computation (see Table 1). Here we present the gravity

function, which does a very similar transformation, but is designed to take a document-term
matrix (DTM) as input.

The first step is to binarize the DTM: if a word (columns) is mentioned at least once in a
particular document (rows), the corresponding cell entry is 1, and 0 otherwise. Let Y denote
this binarized DTM. From this simplified structure the word co-occurrence matrix C can be
computed by C = Y′Y. Thus, only the information on whether words occur together or not
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is considered. C is a symmetric matrix (with elements cij) with co-occurrence frequencies
in the off-diagonals. Let ci+ =

∑

j 6=i cij and c+j =
∑

i6=j cij be the respective margins of C
(diagonal blanked out). The gravity model defines the following dissimilarities (for i 6= j):

δij =

√

ci+c+j

cij
. (15)

To illustrate a gravity application on text data we use a DTM similar to the one presented
in Mair et al. (2014). This DTM was created on the basis of statements of 254 Republican
voters who had to complete the sentence “I am a Republican because...”. First, let us create
the gravity dissimilarities according to the strategy outlined above.

R> gopD <- gravity(GOPdtm)$gravdiss

Note that using text data, C is typically sparse (i.e., many elements cij = 0). For these
elements we cannot compute Equation (15) since we divide by 0. The function sets the
corresponding entries to NA. In the subsequent MDS call, these elements are automatically
blanked out by setting the corresponding weight wij to 0 in the basic stress equation.

R> fitGOP <- mds(gopD, type = "ordinal") ## 2D ordinal MDS

R> plot(fitGOP, plot.type = "bubbleplot", bubscale = 20)

Figure 15 shows the bubble plot which incorporates the stress-per-point (SPP) information.
The larger a bubble, the larger the contribution of a particular object (here, word) to the total
stress. Objects with large SPP values are responsible for misfit. The closer two words are in
the configuration, the more often they have been mentioned together in a single statement.

An extension of this model is presented in Mair et al. (2014), who introduce the exponent λ
in order to emphasize larger dissimilarities. The reason for this is that in text data we often
end up with little variance in the input dissimilarities which leads to a concentric, circular
representation of the configuration. Equation 15 changes to

δij =

(

ci+c+j

cij

)
λ
2

. (16)

This extension is called power gravity model. The parameter λ needs to be chosen ad hoc and
can take values from [−∞, ∞]. For λ < 1 we shrink large dissimilarities, for λ = 1 we end
up with the ordinary gravity model, and for λ > 1 we stretch large dissimilarities. Note that
there is a trade-off between the choice of λ and the stress: the more structure we create, the
higher the stress. This extension is relevant for metric MDS strategies such as ratio, interval,
or spline MDS. The λ parameter can be specified in the gravity function.

A recent work by Rusch, Mair, and Hornik (2019) embeds the gravity formulation into a more
general loss function which, among other things, finds an optimal λ during the optimization
process. Their methodology is implemented in the cops package.

6.3. Asymmetric MDS

So far, except in unfolding, ∆ has been a symmetric matrix of input dissimilarities. In this
section we aim to scale square asymmetric dissimilarity matrices. Borg and Groenen (2005,
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Figure 15: Bubble plot for gravity MDS solution on GOP data. The larger the bubbles, the
larger the SPP.

Chapter 23), Bove and Okada (2018), as well as Zielman and Heiser (1996) present various
asymmetric MDS variants of which smacof implements the drift vector model (Borg 1979).
The starting point of this approach is to decompose the asymmetric dissimilarity matrix ∆
into a symmetric part M, and a skew-symmetric part N:

∆ = M + N, (17)

with M = (∆ + ∆′)/2, and N = (∆ − ∆′)/2. In smacof, the symdecomp function can be used
for this decomposition. Drift vector models display simultaneously the symmetric and the
skew-symmetric part of ∆. They first fit an MDS (of any type) on the symmetric matrix M,
resulting in the configuration X. The asymmetric information is then incorporated as follows
(Borg and Groenen 2005, p. 503):

• For each object pair i, j compute aij = xi − xj which results in a vector of length p.

• Norm aij to unit length, resulting in bij = aij/
√

a′
ijaij .

• Incorporate the skew-symmetric part: cij = nijbij with nij as the corresponding element
in N (drift vectors).

• For a given point i, average the elements in cij : di =
∑

j cji/n (average drift vectors).
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Figure 16: MDS solution for asymmetric Morse code data including drift vectors.

• For plotting compute the vector coordiates of di with angle αi = arccos(d′
iu/

√

d′
idi)

with u′ = (0, 1).

To illustrate the drift vector model, we use the classical Morse code data by Rothkopf (1957).
Rothkopf asked 598 subjects to judge whether two signals, presented acoustically one after
another, were the same or not. The values are the average percentages for which the answer
“Same!” was given in each combination of row stimulus i and column stimulus j, where
either i or j was the first signal presented. The responses were aggregated to confusion
rates and subsequently subtracted from 1, such that the values represent dissimilarities. The
driftVector function performs the decomposition from Equation 17, fits an MDS of choice on
M, and applies the drift vector computation steps outlined above. For the Morse code data,
the resulting drift configuration plot based on a 2D ordinal MDS fit, is given in Figure 16.

R> morseDrift <- driftVectors(morse2, type = "ordinal")

R> plot(morseDrift, main = "Drift Vectors Morse Codes")

We see that the vectors tend to point in the bottom left direction; they are certainly not
random. In the bottom left quadrant we mostly have longer signals suggesting that shorter
signals are more often confused with longer ones than vice versa.
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Other approaches to scale asymmetric data implemented in R are the following. Vera and
Rivera (2014) embed MDS into a structural equation modeling framework. Their approach
is implemented in the semds package (Vera and Mair 2019). Zielman and Heiser (1993)
developed a slide-vector approach which is implemented in asymmetry (Zielman 2018). Un-
folding strategies from Section 5 can also be used for asymmetric dissimilarity matrices. An
application can be found in Sagarra, Busing, Mar-Molinero, and Rialp (2018).

6.4. Procrustes

Sometimes it is of interest to compare multiple MDS configurations based on, for instance,
different experimental conditions (the objects need to be the same within each condition).
The idea of Procrustes (Hurley and Cattell 1962) is to remove “meaningless” configuration
differences such as rotation, translation, and dilation. Procrustes transformations do not
change the fit (stress value) of an MDS.

In brief, Procrustes works as follows. Let X and Y be two MDS configuration matrices.
X is the target configuration, and Y the configuration subject to Procrustes transformation
leading to the transformed configuration matrix Ŷ. Further, let Z be a centering matrix
(Z = I − n−111′). Procrustes involves the following steps:

1. Compute C = X′ZY.

2. Perform an SVD on C, i.e., C = PΦQ′. Compute:

• rotation matrix: T = QP′,

• dilation factor: s = tr(X′ZYT)/tr(Y′ZY),

• translation vector t = n−1(X − sYT′)1.

3. Final solution: Ŷ = sYT + 1t′.

The matrix Ŷ contains the Procrustes transformed configuration and replaces Y. The target
configuration X and Ŷ can be plotted jointly and allows researchers to explore potential
differences between the configurations.

The dataset we use to illustrate Procrustes is taken from Vaziri-Pashkam and Xu (2019). In
their functional magnetic resonance imaging (fMRI) experiment on visual object representa-
tions they used both natural and artificial shape categories to study the activation of various
brain regions. We start with fitting two ordinal MDS solutions, one for each condition

R> artD <- sim2diss(VaziriXu$artificialR)

R> fitart <- mds(artD, type = "ordinal") ## artificial condition

R> realD <- sim2diss(VaziriXu$realR)

R> fitnat <- mds(realD, type = "ordinal") ## natural condition

By plotting the two configurations, Figure 17 suggests that these configurations are different.
Let us apply a Procrustes transformation with the artificial condition as target configuration
X, and the natural condition solution as testee configuration Y, subject to transformation.

R> fitproc <- Procrustes(fitart$conf, fitnat$conf)

R> fitproc
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Figure 17: Left panel: MDS configuration natural condition. Right panel: MDS configura-
tion artificial condition.

Call: Procrustes(X = fitart$conf, Y = fitnat$conf)

Congruence coefficient: 0.971

Rotation matrix:

D1 D2

D1 -0.826 -0.564

D2 0.564 -0.826

Translation vector: 0 0

Dilation factor: 0.906

The print output shows the rotation matrix, the dilation factor, and the translation vector
(which is always 0 if two MDS configurations are involved, due to normalization constraints).
In addition, it reports Tucker’s congruence coefficient for judging the similarity of two con-
figurations. This coefficient is derived from factor analysis and can be computed as follows:

c(X, Y) =

∑

i<j wijdij(X)dij(Y)
√

∑

i<j wijd2
ij(X)

√

∑

i<j wijd2
ij(Y)

(18)

A few remarks regarding the congruence coefficient. First, it is generally recommended that
one uses the congruence coefficient to judge configurational similarity and not the correlation
coefficient, since correlating distances does not properly assess the similarity of configurations
(see Borg and Groenen 2005, p. 439–440 for details). Second, there is actually no Procrustes
transformation needed to compute the congruence coefficient, since c(X, Y) = c(X, Ŷ).



36 SMACOF in R

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
0
.5

0
.0

0
.5

1
.0

Procrustes Configuration Plot

Dimension 1

D
im

e
n
s
io

n
 2 ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

V1
V2

V3

V4

LO

VOT

V3A

V3B

IPS0

IPS1

IPS2
IPS3

IPS4

Inferior IPS

Superior IPS

V1

V2

V3

V4

LO

VOT

V3A

V3B
IPS0 IPS1

IPS2

IPS3

IPS4

Inferior IPS

Superior IPS

●

●

artificial

natural

Figure 18: Procrustes on two MDS configurations: the configuration from the artificial
condition acts as target; the one from the natural condition is Procrustes transformed.

Third, when applying (18) within an MDS context, the resulting value of c(X, Y) is gen-
erally high. In factor analysis, values in the range of 0.85-0.94 are considered to be “fairly
similar”, and values higher than 0.95 suggest that the two factors are considered equal (see
Lorenzo-Seva and ten Berge 2006, for details).

Figure 18 shows the Procrustes transformed solution (i.e., plotting X and Ŷ jointly) and
suggests that the two configurations are actually very similar, apart from a few points (e.g.,
inferior IPS, V4).

R> plot(fitproc, legend = list(labels = c("artificial", "natural")))

Another option to apply Procrustes is to use a theoretical configuration as target. For in-
stance, Borg and Leutner (1983) constructed rectangles on the basis of a grid design (as
contained in rect_constr) which we use as target configuration. Participants had to rate
similarity among rectangles within this grid. Based on these ratings a dissimilarity matrix
was constructed, here subject to a 2D ordinal MDS solution. Within the context of theoretical
solutions it is sometimes interesting to determine the stress value based on the dissimilarity
matrix and an initial configuration (with 0 iterations). The stress0 function does the job.

R> stress0(rectangles, init = rect_constr) ## stress value 0 iterations

[1] 0.3227155
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Figure 19: Procrustes with theoretical grid as target configuration (blue dots).

Now we fit an ordinal MDS model, using the theoretical rectangle alignment as starting values
which leads to a clearly lower stress value than the one of the theoretical grid. The resulting
MDS configuration is used as testee configuration Y, subject to Procrustes.

R> fitrect <- mds(rectangles, type = "ordinal", init = rect_constr)

R> round(fitrect$stress, 3)

[1] 0.089

R> procRect <- Procrustes(rect_constr, fitrect$conf)

R> round(procRect$congcoef, 3) ## congruence coefficient

[1] 0.937

R> plot(procRect, xlim = c(2, 7),

+ legend = list(labels = c("theoretical", "observed")))

Figure 19 plots the rectangle grid and the Procrustes transformed configuration jointly. We
see clear differences; the congruence coefficient is still fairly large, however.

Note that Procrustes is not limited to MDS applications. It can be applied to any configuation
matrices X and Y as long as the objects involved are the same and the matrices have the same
dimensions. Other forms of generalized Procustes analysis are given in Borg and Groenen
(2005, Section 20.9).
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6.5. MDS biplots

Biplots were developed within the context of principal component analysis (PCA; Gabriel
1971). In a PCA biplot the loadings vectors are mapped on top of the scatterplot of the prin-
cipal component scores. However, the concept of biplots can be applied to other multivariate
techniques as well, as elaborated in Greenacre (2010) and Gower, Lubbe, and le Roux (2011).
In MDS, biplots are typically used to map external variables onto the MDS configuration.
Such covariates allow users to explore meaningful directions in the MDS space rather than
trying to interpret the dimensions directly.

Let Y be a n×q matrix with q external variables in the columns. To produce an MDS biplot,
the following multivariate regression problem needs to be solved:

Y = XB + E, (19)

where B is a p × q containing p regression coefficients for each of the q variables, and E is
the n × q matrix of errors. The corresponding OLS estimates B̂ = (X′X)−1X′Y give the
coordinates of the external variables in the MDS space. The smacof package provides the
biplotmds function which performs the regression fit. By default, the external variables are
standardized internally.

Let us start with a simple example where we map a single metric variable onto a configuration,
using the facial expression dataset from Section 4 once more. We fit an unrestricted ordinal
MDS solution, and map the pleasant-unpleasant (PU) variable on top of the configuration.

R> ext <- data.frame(PU = FaceScale[,1])

R> fitFace <- mds(FaceExp, type = "ordinal") ## ordinal MDS fit

R> biFace <- biplotmds(fitFace, extvar = ext) ## map external variable

R> coef(biFace)

PU

D1 -1.6214189

D2 -0.6295513

R> round(biFace$R2vec, 3)

PU

0.923

We print out the regression coefficients and the R2 value, which tell us how well the external
variable can be mapped onto the configuration in terms of the amount of variance explained.
Figure 20 shows two versions of the resulting biplots. The left panel uses the vector represen-
tation as advocated in Greenacre (2010), the right panel the axis representation as preferred
by Gower et al. (2011). For the axis representation we can do an orthogonal projection of the
points on the axis, which gives the fitted values. The calibrate package (Graffelman 2013)
turns out to be helpful for such purposes.

R> library("calibrate")

R> plot(biFace, main = "Biplot Vector", vecscale = 0.8,
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Figure 20: Left panel: vector representation of external variable. Right panel: axis repre-
sentation of external variable.

+ vec.conf = list(col = "brown"), xlim = c(-1.5, 1.5))

R> plot(fitFace, main = "Biplot Axis", xlim = c(-1.5, 1.5))

R> abline(h = 0, v = 0, lty = 2, col = "gray")

R> calFace <- calibrate(biFace$coef[, 1], ext$PU, tm = seq(-5, 6, by = 1),

+ Fr = fitFace$conf, dp = TRUE, axiscol = "brown",

+ axislab = "PU", labpos = 3, verb = FALSE)

Let us move on with a second, more complex example involving multiple external variables
which reproduces part of the analysis presented in Mair (2018a). We use the mental states
dataset from Tamir, Thornton, Contreras, and Mitchell (2016) who, for each individual,
collected a dissimilarity matrix involving 60 mental states, derived from fMRI scans. The
data are included in the MPsychoR package. We average across the individuals, which leads
to a single 60 × 60 dissimilarity, subject to a 2D monotone spline MDS. After the biplot
computations, we print out the R2 values.

R> library("MPsychoR")

R> data(NeuralActivity) ## dissimilarity matrices

R> data(NeuralScales) ## external variables

R> NeuralD <- Reduce("+", NeuralActivity)/length(NeuralActivity)

R> fitNeural <- mds(NeuralD, type = "mspline")

R> biNeural <- biplotmds(fitNeural, NeuralScales[,1:8])

R> round(biNeural$R2vec, 3)

Agency Experience High.Arousal Low.Arousal Body

0.242 0.299 0.134 0.093 0.232
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Figure 21: Left panel: vector representation of external variable. Right panel: axis repre-
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The vector version of the MDS biplot in given in Figure 21.

R> plot(biNeural, col = "gray", label.conf = list(col = "gray", cex = 0.7),

+ vec.conf = list(col = "brown"), main = "Neural Biplot",

+ xlim = c(-1.5, 1.5), ylim = c(-1.5, 1.5))

The longer a covariate vector, the larger the corresponding R2, that is, the more accurate
the corresponding axis projections are in relation to the raw data. The orientation of the
vectors reflects the correlation patterns among the external variables, assuming the plot gives
an accurate representation of the data (of course, we lose information here due to projecting
into a low-dimensional space). Other options such as nonlinear MDS biplots are presented in
(Gower et al. 2011, Chapter 5), including corresponding R code.
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7. Conclusion

In this follow-up paper to De Leeuw and Mair (2009b), who introduced the smacof package,
we presented numerous updates that have been implemented over the years. It is safe to say
that these developments establish smacof as the most comprehensive implementation of MDS
and unfolding techniques in R. Still, there are several tasks on our to-do list. First, we plan to
implement a fastMDS() routine entirely written in C to speed up computations for large data
settings. Second, we will work on an implementation of inverse MDS (De Leeuw and Groenen
1997). Third, we aim to implement approaches that project on a pre-specified polygon mesh.
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