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Abstract

This vignette serves as an online appendix for the manuscript Tamási and Hothorn (2022). It

presents three example analyses that use mixed-effects additive transformation models to reanalyze

datasets from recently published studies in the field of ecology.

1 E. coli concentrations in streams with different grazing pe-

riods

Hulvey et al. (2021) compare the concentration levels of Escherichia coli bacteria (most probable

number, MPN) in streams under three different rotational grazing regimes. In the additive mixed

model specifications they estimated, within-year variability was modeled, as functions of the day of

year (DOY), with cubic regression splines and between-year and location-level variability was captured

by random intercepts of pasture-specific year effects and separate stream effects. Note that although

the cyclic version of the cubic regression splines (bs = ’cc’ in mgcv and tramME) would be more

appropriate for modeling the within-year trend, the original article used bs = ’cr’ and hence we also

stick with this basis in our reanalysis.

As a first step, we replicate the results of all model variants that they investigated in the original

article with the R package gamm4 (Wood and Scheipl, 2020). Next, we reproduce the results with

additive transformation models assuming conditional normality and, finally, relax the distributional

assumption and evaluate how the model fits change. As Table 1 shows, we managed to reproduce

the gamm4 results with tramME. Moreover, relaxing the distributional assumption of the normal linear

model resulted in stronger model fits in terms of log-likelihood values.

R> ## specifications w/o random effects

R> mf <- c(log10(ecoli_MPN) ~ treatment + cattle +

+ s(DOY, bs = 'cr', by = treatment),

+ log10(ecoli_MPN) ~ treatment + cattle + s(DOY, bs = 'cr'),

+ log10(ecoli_MPN) ~ treatment + s(DOY, bs = 'cr', by = treatment),

+ log10(ecoli_MPN) ~ cattle + s(DOY, bs = 'cr'),

+ log10(ecoli_MPN) ~ treatment + s(DOY, bs = 'cr'),

+ log10(ecoli_MPN) ~ s(DOY, bs = 'cr'))

R> names(mf) <- paste("Model", c(1:5, "Null"))

R> ecoli_res <- data.frame(matrix(NA, nrow = length(mf), ncol = 3))

R> colnames(ecoli_res) <- c("gamm", "LmME", "BoxCoxME")
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R> rownames(ecoli_res) <- names(mf)

R> for (i in seq_along(mf)) {
+ m_gamm <- gamm4(mf[[i]], data = ecoli,

+ random = ~ (1 | year:stream:pasture) + (1 | stream),

+ REML = FALSE)

+ ecoli_res$gamm[i] <- logLik(m_gamm$mer)

+ mf2 <- update(mf[[i]], . ~ . + (1 | year:stream:pasture) + (1 | stream))

+ m_LmME <- LmME(mf2, data = ecoli)

+ if (m_LmME$opt$convergence == 0) ecoli_res$LmME[i] <- logLik(m_LmME)

+ m_BCME <- BoxCoxME(mf2, data = ecoli)

+ if (m_BCME$opt$convergence == 0) ecoli_res$BoxCoxME[i] <- logLik(m_BCME)

+ }

Table 1: Log-likelihood values of the fitted models presented by Hulvey et al. (2021, GAMM ),

replicated as mixed-effects additive transformation models assuming conditional normality (Addi-

tive normal transformation model) and extended as flexible (non-normal) mixed-effects additive

transformation models (Additive non-normal transformation model).

GAMM
Additive normal

transformation model

Additive non-normal

transformation model

Model 1 -339.23 -339.23 -320.94

Model 2 -343.66 -343.66 -324.54

Model 3 -368.33 -368.33 -349.10

Model 4 -347.70 -347.70 -328.25

Model 5 -367.15 -367.15 -347.27

Model Null -373.76 -373.76 -353.50

Let us focus on the most complicated specification, Model 1,

R> update(mf[[1]], . ~ . + (1 | year:stream:pasture) + (1 | stream))

log10(ecoli_MPN) ~ treatment + cattle + s(DOY, bs = "cr", by = treatment) +

(1 | year:stream:pasture) + (1 | stream)

and compare the effect estimates from the normal model to its non-parametric counterpart. But first,

notice that by changing the transformation from h(y) = ϑ0 + ϑ1y to h(y) = a(y)>ϑ, we change the

scale on which the coefficients and the smooth terms are interpreted. In the normal additive mixed

model, the coefficient of a fixed effect captures the change in the expectation of the outcome when

increasing the respective predictor by one unit (keeping everything else unchanged). In the non-normal

transformation model with Φ as the inverse link, the coefficients capture similar effects but on a latent

scale defined by the transformation h(Y ).

To cast the effect estimates from the two models to a common scale, we can calculate the probabilistic

indices (PI, Thas et al., 2012). To simplify the notation, without loss of generality, we will now focus

on the simple, fixed effects-only case:

P(Y ≤ y |X = x) = Φ
(
h(y)− x>β

)
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The PI is the probability that one outcome (Y ?) is larger than the other (Y ), given the same covariate

values (X) except for one, which is larger with one unit (X?)

P (Y < Y ? |X,X?) = P (h(Y ) < h(Y ?) |X,X?)

= P
(
h(Y )− h(Y ?) + β√

2
<

β√
2

∣∣∣∣X,X?

)
= Φ

(
β√
2

)
,

where β is the coefficient of the covariate that is different with one unit. The third line is true, because

h(Y ) and h(Y ?) are independent, normally distributed random variables, with unit variance and a

mean difference of β. Notice that the PI does not depend on the transformation function. When

random effects are present in the model, the PI is conditional on the cluster.

By casting the effect estimates to the probability scale, Figure 1 compares the smooth terms from

the normal and non-normal versions of Model 1, while the first two blocks of Table 2 the fixed effects

estimates. The results are very close to each other, which suggests that the original log-normal model

is actually appropriate. As a built-in visual normality check, we can compare the fitted transformation

functions of the normal and non-normal transformation models. The linear function corresponds to

normal conditional distribution in Figure 2. This result further confirms the appropriateness of the

normal additive model in this specific example.
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Figure 1: The comparison of the smooth terms from the normal and non-normal (probit link)

mixed-effects additive transformation models (specification Model 1).

The outcome variable (MPN per 100 ml) was measured with the Quanti-Tray System, which can

detect E. coli concentrations up to a maximum of 2,419.6 MPN without dilution. This means that

there is an effective upper detection limit on the outcome, i.e., the 25 observations with the value of

2,419.6 are right censored. The authors of the original article mention this fact, but they do not take

into account in the subsequent analyses. Because censoring can be easily handled in tramME, we will

rerun the model taking the upper limit into account.

R> fm1c <- update(fm1, Surv(log10(ecoli_MPN), event = ecoli_MPN < 2419.6) ~ .)

R> ecoli_m1_cens <- BoxCoxME(fm1c, data = ecoli)

R> summary(ecoli_m1_cens)

Non-Normal (Box-Cox-Type) Linear Additive Mixed-Effects Regression Model
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Figure 2: Baseline transformation functions from the normal and non-normal mixed-effects additive

transformation models.

Formula: Surv(log10(ecoli_MPN), event = ecoli_MPN < 2419.6) ~ treatment +

cattle + s(DOY, bs = "cr", by = treatment) + (1 | year:stream:pasture) +

(1 | stream)

Fitted to dataset ecoli

Fixed effects parameters:

=========================

Estimate Std. Error z value Pr(>|z|)

treatmentmedium -0.680 0.230 -2.95 0.0032 **

treatmentshort -0.772 0.317 -2.44 0.0148 *

cattlePresent 1.108 0.149 7.42 1.2e-13 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Smooth shift terms:

===================

edf

s(DOY):treatmentlong 4.38

s(DOY):treatmentmedium 4.55

s(DOY):treatmentshort 4.30

Random effects:

===============

Grouping factor: year:stream:pasture (32 levels)

Standard deviation:

(Intercept)
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0.431

Grouping factor: stream (12 levels)

Standard deviation:

(Intercept)

0.000204

Log-likelihood: -358 (npar = 18)

The fitted non-linear terms are compared to the original (normal linear) estimates in Figure 3 and

the fixed effects are presented in the third block of Table 2.

Table 2: Estimates of the parametric fixed-effects terms on the probability scale (PI: probabilistic

index) from the normal, non-normal and non-normal (with censoring taken into account) models,

respectively.

Normal Non-normal Non-normal, censored

PI 95% CI PI 95% CI PI 95% CI

treatment = medium 0.32 0.22—0.44 0.33 0.22—0.45 0.32 0.21—0.44

treatment = short 0.29 0.16—0.45 0.30 0.17—0.46 0.29 0.16—0.46

cattle = present 0.79 0.72—0.84 0.78 0.72—0.84 0.78 0.72—0.84
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Figure 3: The comparison of the smooth terms from the original model (normal linear) and the

non-normal (probit link) extension where censoring is also taken into account.

Because the transformation model approximates the conditional distribution of the outcome, in

theory, we do not even have to take the base 10 logarithm of the Ecoli most probable numbers (MPN)

on the left-hand side of the model formula. tramME should be able to approximate the most likely

transformation.

R> f_nontr <- update(fm1, Surv(ecoli_MPN, event = ecoli_MPN < 2419.6) ~ .)

R> ecoli_nontr <- BoxCoxME(f_nontr, data = ecoli, log_first = TRUE)

R> summary(ecoli_nontr)
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Non-Normal (Box-Cox-Type) Linear Additive Mixed-Effects Regression Model

Formula: Surv(ecoli_MPN, event = ecoli_MPN < 2419.6) ~ treatment + cattle +

s(DOY, bs = "cr", by = treatment) + (1 | year:stream:pasture) +

(1 | stream)

Fitted to dataset ecoli

Fixed effects parameters:

=========================

Estimate Std. Error z value Pr(>|z|)

treatmentmedium -0.680 0.230 -2.95 0.0032 **

treatmentshort -0.772 0.317 -2.44 0.0148 *

cattlePresent 1.108 0.149 7.42 1.2e-13 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Smooth shift terms:

===================

edf

s(DOY):treatmentlong 4.38

s(DOY):treatmentmedium 4.55

s(DOY):treatmentshort 4.30

Random effects:

===============

Grouping factor: year:stream:pasture (32 levels)

Standard deviation:

(Intercept)

0.431

Grouping factor: stream (12 levels)

Standard deviation:

(Intercept)

0.000394

Log-likelihood: -2027 (npar = 18)

Notice that we set log first = TRUE in the function call, to take the natural logarithm of the

outcome before setting up the Bernstein bases. This usually helps the approximation in the case of

positive right-skewed outcomes. With this, we basically estimate the same model as the original, but

with the natural logarithm instead of base-ten. Because of this, the log-likelihood values are different,
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but the fixed effects and variance components parameter estimates, as well as the smooth terms are

essentially the same as in the case of the model ecoli m1 cens.

In summary, after bringing the estimates to the same scale, the results of the additive mixed effects

model did not change much in this specific example by switching to the transformation model approach.

The originally applied base 10 logarithm falls very close to the fitted “most likely transformation”, i.e.,

taking the logarithm of the outcome was sufficient to achieve (close) conditional normality. This could

be verified through comparing the baseline transformation functions of the normal and non-normal

models, which can also serve as a visual check on conditional normality. Moreover, the number of

censored outcomes was relatively small in the sample, so taking the censoring properly into account

did not result in large differences, either. However, as the example demonstrated, transformation

models are flexible enough to accommodate these properties of the response of interest (non-normality

and censoring) automatically, without the need to apply ad hoc transformations or to implement new

estimation procedures.

2 Sea urchin removal experiment

Andrew and Underwood (1993) analyzed the percentage cover of filamentous algae under four sea

urchin removal treatments (Control/33%/66%/Removal). The algae colonization was measured on

five quadrants located on several larger patches, so there is a clear grouped structure in the data.

Douma and Weedon (2019) reanalyzed the data as a demonstration for the usage of mixed-effects

models for zero-inflated beta regression models. Here we fit mixed-effects transformation models to

the data, and compare the results to zero-inflated mixed-model estimates obtained from glmmTMB

(Brooks et al., 2017). Figure 4 presents the empirical cumulative distribution functions of the outcome

under the four treatments. Note the large number of zeros, especially in the control group.
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Figure 4: Empirical CDFs of the algae cover proportions under the four treatments.

First we fit a zero-inflated beta regression model with random intercepts for the patches. The

probability of observing zero values depends is allowed to vary with the treatment.
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R> urchin_zib <- glmmTMB(pALGAE ~ TREAT + (1 | PATCH), ziformula = ~ TREAT,

+ data = andrew, family = beta_family())

R> summary(urchin_zib)

Family: beta ( logit )

Formula: pALGAE ~ TREAT + (1 | PATCH)

Zero inflation: ~TREAT

Data: andrew

AIC BIC logLik deviance df.resid

87.2 111.0 -33.6 67.2 70

Random effects:

Conditional model:

Groups Name Variance Std.Dev.

PATCH (Intercept) 0.124 0.352

Number of obs: 80, groups: PATCH, 16

Dispersion parameter for beta family (): 4.06

Conditional model:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.060 0.530 -3.89 0.0001 ***

TREAT0.33 1.280 0.614 2.08 0.0372 *

TREAT0.66 1.374 0.602 2.28 0.0223 *

TREATremoval 1.783 0.585 3.05 0.0023 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Zero-inflation model:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.099 0.516 2.13 0.03338 *

TREAT0.33 -1.299 0.685 -1.90 0.05772 .

TREAT0.66 -1.504 0.689 -2.18 0.02908 *

TREATremoval -2.833 0.812 -3.49 0.00048 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As an alternative to the traditional beta regression approach, we estimate a mixed-effects continuous

outcome logistic regression.

R> urchin_tram <- ColrME(

+ Surv(pALGAE, pALGAE > 0, type = "left") ~ TREAT + (1 | PATCH),

+ bounds = c(-0.1, 1), support = c(-0.1, 1), data = andrew,

+ order = 6)

R> summary(urchin_tram)
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Mixed-Effects Continuous Outcome Logistic Regression Model

Formula: Surv(pALGAE, pALGAE > 0, type = "left") ~ TREAT + (1 | PATCH)

Fitted to dataset andrew

Fixed effects parameters:

=========================

Estimate Std. Error z value Pr(>|z|)

TREAT0.33 -2.04 1.31 -1.56 0.1178

TREAT0.66 -2.49 1.31 -1.90 0.0571 .

TREATremoval -4.10 1.34 -3.06 0.0022 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Random effects:

===============

Grouping factor: PATCH (16 levels)

Standard deviation:

(Intercept)

1.48

Log-likelihood: -26.3 (npar = 11)

To allow for a jump in the CDF of the outcome, we expand its bound and treat the zero observations

as left-censored. This way, we can place a point mass on zero, i.e., introduce a jump at 0 (see Figure 5).
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Figure 5: Visual demonstration of how a discrete jump is introduced in the CDF by extending the

support and treating the edge cases as censored.
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Because the zero-inflated beta model is a mixture of two models, the interpretation of its results

is cumbersome. It is not clear which parameters, or combinations of parameters, one needs to inspect

to contrast the effects of the various treatments. Moreover, extra steps are needed to calculate the

marginal effects of the covariates. In contrast, the mixed-effects transformation model only contains a

single set of fixed effects parameters and their interpretation is straightforward: For example, the odds

of observing higher proportions of algae cover under the 33% removal treatment is about exp(−β̂0.33) =

7.71 times higher compared to the control group.

To assess the fits of the two models we can marginalize the conditional distributions by integrating

over the random effects numerically, and compare against the ECDFs. As Figure 6 shows, both model

overestimate the dispersion in the control group.
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Figure 6: Fitted marginal distributions of algae cover proportion from the zero-inflated beta re-

gression and the mixed-effects transformation model, respectively. The step functions show the

empirical cumulative distribution functions in the four treatment groups.

Systematic differences in the outcome variability in the treatment groups occur in many situations

(Douma and Weedon, 2019). By modeling the dispersion separately, we can incorporate such differences

in the beta regression model.

R> urchin_zib_disp <- glmmTMB(pALGAE ~ TREAT + (1 | PATCH),

+ ziformula = ~ TREAT, dispformula = ~ TREAT,

+ data = andrew, family = beta_family())

R> summary(urchin_zib_disp)

Family: beta ( logit )

Formula: pALGAE ~ TREAT + (1 | PATCH)

Zero inflation: ~TREAT

Dispersion: ~TREAT

Data: andrew

AIC BIC logLik deviance df.resid

87.9 118.8 -30.9 61.9 67

Random effects:
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Conditional model:

Groups Name Variance Std.Dev.

PATCH (Intercept) 0.198 0.445

Number of obs: 80, groups: PATCH, 16

Conditional model:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.908 0.420 -6.92 4.5e-12 ***

TREAT0.33 2.158 0.587 3.68 0.00023 ***

TREAT0.66 2.213 0.559 3.96 7.6e-05 ***

TREATremoval 2.595 0.523 4.96 7.0e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Zero-inflation model:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.099 0.516 2.13 0.03338 *

TREAT0.33 -1.299 0.685 -1.90 0.05772 .

TREAT0.66 -1.504 0.689 -2.18 0.02908 *

TREATremoval -2.833 0.812 -3.49 0.00048 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Dispersion model:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.612 0.849 4.26 2.1e-05 ***

TREAT0.33 -2.424 0.925 -2.62 0.0087 **

TREAT0.66 -2.279 0.921 -2.47 0.0134 *

TREATremoval -2.036 0.870 -2.34 0.0193 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In the mixed-effects linear transformation model, we stratify to the treatment group to allow for

separate transformation functions.

R> urchin_tram_strat <- ColrME(

+ Surv(pALGAE, pALGAE > 0, type = "left") | 0 + TREAT ~ 1 + (1 | PATCH),

+ bounds = c(-0.1, 1), support = c(-0.1, 1), data = andrew,

+ order = 6, control = optim_control(iter.max = 1e3, eval.max = 1e3,

+ rel.tol = 1e-9))

R> summary(urchin_tram_strat)

Stratified Mixed-Effects Continuous Outcome Logistic Regression Model

Formula: Surv(pALGAE, pALGAE > 0, type = "left") | 0 + TREAT ~ 1 + (1 |

PATCH)
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Fitted to dataset andrew

Fixed effects parameters:

=========================

No estimated shift coefficients.

Random effects:

===============

Grouping factor: PATCH (16 levels)

Standard deviation:

(Intercept)

1.51

Log-likelihood: -22.9 (npar = 29)

As Figure 7 illustrates, the two models fit the data much better. However, the cost of this flexibility

is that we cannot reduce the group comparisons to inference of a small set of parameters anymore.
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Figure 7: Fitted marginal distributions of algae cover proportion from the zero-inflated beta re-

gression with dispersion model and the stratified mixed-effects transformation model, respectively.

The step functions show the empirical cumulative distribution functions in the four treatment

groups.

Figures 6 and 7 demonstrate the flexibility of the distribution-free approach of transformation

models compared to the parametric alternative. This is also reflected in the log-likelihood values

(Table 3).

3 Mosquito control trial

Juarez et al. (2021) presented the results of a cluster randomized crossover trial that assessed the

efficacy of Autocidal Gravid Ovitrap (AGO) as a tool for against the mosquito species Aedes aegypti.

The outcome of interest was the number of female mosquitoes collected on glue boards that were placed
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Table 3: Log-likelihood values of the four model specifications for the sea urchin removal experi-

ment.

logL

Zero-inflated beta w/o dispersion model -33.60

Linear transformation model -26.27

Zero-inflated beta w/ dispersion model -30.93

Stratified linear transformation model -22.86

either inside or outside the selected houses in various neighborhoods. Within-year patterns in mosquito

counts as well as coverage of the treatment in different areas were modeled with non-linear smooths,

while unobserved household and community level effects were captured by nested random effects. The

original article presented the results of a conditional Poisson and a negative binomial model. We

reproduce these results with gamm4, and also estimate a mixed-effects additive transformation model

for count data with “expit” inverse link function. Detailed exposition of count transformation models

is given by Siegfried and Hothorn (2020). For this, we will use the following custom-made ’CotramME’

model class, which is currently not part of the tramME package.

R> ## additive count transformation model

R> CotramME <- function(formula, data,

+ method = c("logit", "cloglog", "loglog", "probit"),

+ log_first = TRUE, plus_one = log_first, prob = 0.9,

+ ...) {
+ method <- match.arg(method)

+ rv <- all.vars(formula)[1]

+ stopifnot(is.integer(data[[rv]]), all(data[[rv]] >= 0))

+ data[[rv]] <- data[[rv]] + as.integer(plus_one)

+ sup <- c(-0.5 + log_first, quantile(data[[rv]], prob = prob))

+ bou <- c(-0.9 + log_first, Inf)

+ data[[rv]] <- as.Surv(R(data[[rv]], bounds = bou))

+ fc <- match.call()

+ fc[[1L]] <- switch(method, logit = quote(ColrME), cloglog = quote(CoxphME),

+ loglog = quote(LehmannME), probit = quote(BoxCoxME))

+ fc$method <- NULL

+ fc$plus_one <- NULL

+ fc$prob <- NULL

+ fc$log_first <- log_first

+ fc$bounds <- bou

+ fc$support <- sup

+ fc$data <- data

+ out <- eval(fc, parent.frame())

+ out$call$data <- match.call()$data

+ class(out) <- c("CotramME", class(out))

+ out

+ }
R> mosquito_tram <- CotramME(AEAfemale ~ Year + Income*Placement
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+ + s(Week) + s(CovRate200) + (1|HouseID)

+ + (1|Community), offset = -log(daystrapping), data = AGO,

+ method = "logit", order = 5, log_first = TRUE, prob = 0.9)

Table 4 compares the log-likelihood values of the three model versions. In terms of in-sample model

fit, as measured by the log-likelihood value, both the negative binomial and the transformation model

perform much better than the Poisson GAMM. The results suggest slight improvement in the model

fit when we relax the conditional distribution assumption of the negative-binomial GAMM and follow

the distribution-free transformation model approach.

Table 4: Log-likelihood values of the fitted Poisson and negative binomial GAMMs reproduced

from Juarez et al. (2021) along with the log-likelihood of an additive transformation model for

count data.

Log-likelihood

Poisson GAMM -6875.73

Negative binomial GAMM -4883.26

Additive count transformation model -4873.07

We will now concentrate on comparing the estimates from the negative binomial and the count

transformation models. Note that the scales on which the parameters are interpreted are different

in the two models: While, in the negative binomial model, the parametric and smooth terms affect

the log of the conditional mean of the outcome, in the transformation model with “logit” link (i.e.,

“expit” inverse link), they are interpreted on the log-hazard scale. Unlike in the example application

of Section 1, we cannot easily transform the negative binomial parameters to the probability scale.

Although the magnitudes of the effect estimates of the two models are not directly comparable, their

directions, significance and the general patters of the smooths can be contrasted.

Figure 8 compares the smooth estimates of the GAMM from gamm4 and the transformation model

from tramME. Although the within-year time patterns (s(Week)) from the two models are almost iden-

tical (on different scales), the differences of the smooth estimates of the coverage rate (s(CovRate200))

are marked. The general patterns of the smooths are similar, but the negative binomial GAMM penal-

izes it more, which is also reflected in the EDFs: 2.96 and 17.49 for the negative binomial and count

transformation models, respectively.

Because the parametric and smooth terms of the two models are defined on different scales, the

magnitudes of the effect estimates are not directly comparable. As Table 5 shows, the directions of

the effects match and neither model finds evidence that the main effect of middle income is different

from zero.
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Figure 8: Smooth terms from the negative binomial and transformation models of the A. aegypti

counts. The dashed lines and the grey areas denote the 95% confidence intervals

Table 5: Point estimates and 95% confidence intervals of the parametric fixed effects terms from

the negative binomial and count transformation models of the mosquito control data by Juarez

et al. (2021). Note that the scale of the parameters are different and the effect sizes are not directly

comparable.

Negative binomial Count transformation

β̂ 95% CI β̂ 95% CI

Year = 2018 −0.20 −0.34 —−0.06 −0.35 −0.55 —−0.15

Income = middle −0.78 −1.69 — 0.13 −0.83 −2.02 — 0.36

Placement = out 2.37 2.22 — 2.52 3.01 2.79 — 3.24

Income = middle & Placement = out 0.38 0.13 — 0.64 0.51 0.16 — 0.86
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R> sessionInfo()

R version 4.1.2 (2021-11-01)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 20.04.4 LTS

Matrix products: default

BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0

LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB.UTF-8 LC_COLLATE=en_US.UTF-8

[5] LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_GB.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] gamm4_0.2-6 lme4_1.1-26 Matrix_1.3-3 xtable_1.8-4

[5] glmmTMB_1.1.2.3 mgcv_1.8-34 nlme_3.1-152 survival_3.2-13

[9] tramME_0.1.2.9000 tram_0.6-1 mlt_1.3-2 basefun_1.1-0

[13] variables_1.1-1

loaded via a namespace (and not attached):

[1] Rcpp_1.0.6 highr_0.8 TMB_1.7.22

[4] compiler_4.1.2 nloptr_1.2.2.2 tools_4.1.2

[7] boot_1.3-27 statmod_1.4.35 evaluate_0.14

[10] lattice_0.20-45 polynom_1.4-0 mvtnorm_1.1-1

[13] xfun_0.23 stringr_1.4.0 BB_2019.10-1

[16] knitr_1.36 grid_4.1.2 orthopolynom_1.0-5

[19] multcomp_1.4-17 minqa_1.2.4 TH.data_1.1-0

[22] alabama_2015.3-1 Formula_1.2-4 magrittr_2.0.1

[25] codetools_0.2-18 splines_4.1.2 MASS_7.3-54

[28] numDeriv_2016.8-1.1 quadprog_1.5-8 sandwich_3.0-1

[31] stringi_1.5.3 coneproj_1.14 zoo_1.8-9
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