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This vignette contains examples from every chapter, which show you how to load data from the wooldridge
data package, and run the appropriate model to match the results of the text examples. The syntax provided
here should get you through the book.

Load the wooldridge package to access data in the manner specified in each example.
library(wooldridge)

Chapter 2: The Simple Regression Model

Example 2.10: A Log Wage Equation

From the text:

" Using the wage1 data as in Example 2.4, but using log(wage) as the dependent variable, we
obtain the following relationship:"

̂log(wage) = β0 + β1educ

First, load the wage1 data.
data(wage1)

Next, estimate a linear relationship between the log of wage and education.
log_wage_model <- lm(lwage ~ educ, data = wage1)

Finally, print the coefficients and R2.
stargazer(log_wage_model, single.row = TRUE, header = FALSE)
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Table 1:

Dependent variable:
lwage

educ 0.083∗∗∗ (0.008)
Constant 0.584∗∗∗ (0.097)
Observations 526
R2 0.186
Adjusted R2 0.184
Residual Std. Error 0.480 (df = 524)
F Statistic 119.582∗∗∗ (df = 1; 524)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Chapter 3: Multiple Regression Analysis: Estimation

Example 3.2: Hourly Wage Equation

From the text:

" Using the 526 observations on workers in ‘wage1’, we include educ(years of education), exper(years
of labor market experience), and tenure(years with the current employer) in an equation explain
log(wage)."

̂log(wage) = β0 + β1educ+ β3exper + β4tenure

Estimate the model regressing education, experience, and tenure against log(wage).
hourly_wage_model <- lm(lwage ~ educ + exper + tenure, data = wage1)

Again, print the estimated model coefficients:
stargazer(hourly_wage_model, single.row = TRUE, header = FALSE)

Table 2:

Dependent variable:
lwage

educ 0.092∗∗∗ (0.007)
exper 0.004∗∗ (0.002)
tenure 0.022∗∗∗ (0.003)
Constant 0.284∗∗∗ (0.104)
Observations 526
R2 0.316
Adjusted R2 0.312
Residual Std. Error 0.441 (df = 522)
F Statistic 80.391∗∗∗ (df = 3; 522)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Chapter 4: Multiple Regression Analysis: Inference

Example 4.7 Effect of Job Training on Firm Scrap Rates

From the text:

" The scrap rate for a manufacturing firm is the number of defective items - products that must
be discarded - out of every 100 produced. Thus, for a given number of items produced, a decrease
in the scrap rate reflects higher worker productivity."

“We can use the scrap rate to measure the effect of worker training on productivity. Using the
data in jtrain, but only for the year 1987 and for non-unionized firms, we obtain the following
estimated equation:”

First, load the jtrain data set.
data("jtrain")

Next, create a logical index identifying which observations occur in 1987 and are non-union.
index <- jtrain$year == 1987 & jtrain$union == 0

Next, subset the jtrain data by the new index. This returns a data.frame of jtrain data of non-union firms
for the year 1987.
jtrain_1987_nonunion <- jtrain[index,]

Now create the linear model regressing hrsemp(total hours training/total employees trained), the log of
annual sales, and the log of the number of the employees, against the log of the scrape rate.

lscrap = α+ β1hrsemp+ β2lsales+ β3lemploy

linear_model <- lm(lscrap ~ hrsemp + lsales + lemploy, data = jtrain_1987_nonunion)

Finally, print the complete summary statistic diagnostics of the model.
stargazer(linear_model, single.row = TRUE, header = FALSE)

Table 3:

Dependent variable:
lscrap

hrsemp −0.029 (0.023)
lsales −0.962∗∗ (0.453)
lemploy 0.761∗ (0.407)
Constant 12.458∗∗ (5.687)
Observations 29
R2 0.262
Adjusted R2 0.174
Residual Std. Error 1.376 (df = 25)
F Statistic 2.965∗ (df = 3; 25)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Chapter 5: Multiple Regression Analysis: OLS Asymptotics

Example 5.3: Economic Model of Crime

From the text:

“We illustrate the Lagrange Multiplier (LM) statistics test by using a slight extension of the
crime model from example 3.5.”

narr86 = β0 + β1pcnv + β2avgsen+ β3tottime+ β4ptime86 + β5qemp86 + µ

narr86 : number of times arrested, 1986.

pcnv : proportion of prior arrests leading to convictions.

avgsen : average sentence served, length in months.

tottime : time in prison since reaching the age of 18, length in months.

ptime86 : months in prison during 1986

qemp86 : quarters employed, 1986

Load the crime1 data set containing arrests during the year 1986 and other information on 2,725 men born
in either 1960 or 1961 in California.
data(crime1)

From the text:

“We use the LM statistic to test the null hypothesis that avgsen and tottime have no effect
on narr86 once other factors have been controlled for. First, estimate the restricted model by
regressing narr86 on pcnv, ptime86, and qemp86; the variables avgsen and tottime are excluded
from this regression.”

restricted_model <- lm(narr86 ~ pcnv + ptime86 + qemp86, data = crime1)

We obtain the residuals µ̃ from this regression, 2,725 of them.
restricted_model_u <- restricted_model$residuals

Next, we run the regression of:

µ̃ = β1pcnv + β2avgsen+ β3tottime+ β4ptime86 + β5qemp86

From the text:

“As always, the order in which we list the independent variables is irrelevant.This second regression
produces R2

µ, which turns out to be about 0.0015.”
LM_u_model <- lm(restricted_model_u ~ pcnv + ptime86 + qemp86 + avgsen + tottime,

data = crime1)

summary(LM_u_model)$r.square

## [1] 0.001493846

“This may seem small, but we must multiple it by n to get the LM statistic:”

LM = 2, 725(0.0015)
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LM_test <- nobs(LM_u_model) * 0.0015
LM_test

## [1] 4.0875

“The 10% critical value in a chi-square distribution with two degrees of freedom is about 4.61
(rounded to two decimal places).”

qchisq(1 - 0.10, 2)

## [1] 4.60517

“Thus, we fail to reject the null hypothesis that βavgsen = 0 and βtottime = 0 at the 10% level.”

The p-value is:
P (X2

2 > 4.09) ≈ 0.129

so we would reject the H0 at the 15% level.
1-pchisq(LM_test, 2)

## [1] 0.129542
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Chapter 6: Multiple Regression: Further Issues

Example 6.1: Effects of Pollution on Housing Prices, standardized.

From the text:

“We use the data hrprice2 to illustrate the use of beta coefficients. Recall that the key independent
variable is nox, a measure of nitrogen oxide in the air over each community. One way to understand
the size of the pollution effect-without getting into the science underling nitrogen oxide’s effect on
air quality-is to compute beta coefficients. The population equation is the level-level model:”

price = β0 + β1nox+ β2crime+ β3rooms+ β4dist+ β5stratio+ µ

price: median housing price.

nox: Nitrous Oxide concentration; parts per million.

crime: number of reported crimes per capita.

rooms: average number of rooms in houses in the community.

dist: weighted distance of the community to 5 employment centers.

stratio: average student-teacher ratio of schools in the community.

The beta coefficients are reported in the following equation (so each variable has been converted to its
z-score):"

ẑprice = β1znox+ β2zcrime+ β3zrooms+ β4zdist+ β5zstratio

First, load the hrpice2 data.

data(hrpice2)

Next, estimate the coefficient with the usual lm regression model but this time, standardized coefficients by
wrapping each variable with R’s scale function:
housing_standard <- lm(scale(price) ~ 0 + scale(nox) + scale(crime) + scale(rooms) +

scale(dist) + scale(stratio), data = hprice2)

stargazer(housing_standard, single.row = TRUE, header = FALSE)

Table 4:

Dependent variable:
scale(price)

scale(nox) −0.340∗∗∗ (0.044)
scale(crime) −0.143∗∗∗ (0.031)
scale(rooms) 0.514∗∗∗ (0.030)
scale(dist) −0.235∗∗∗ (0.043)
scale(stratio) −0.270∗∗∗ (0.030)
Observations 506
R2 0.636
Adjusted R2 0.632
Residual Std. Error 0.606 (df = 501)
F Statistic 174.822∗∗∗ (df = 5; 501)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Example 6.2: Effects of Pollution on Housing Prices, Quadratic Interactive Term

We modify the housing model, adding a quadratic term in rooms:

log(price) = β0 + β1log(nox) + β2log(dist) + β3rooms+ β4rooms
2 + β5stratio+ µ

housing_interactive <- lm(lprice ~ lnox + log(dist) + rooms+I(rooms^2) + stratio, data = hprice2)

Lets compare the results with the model from example 6.1.
stargazer(housing_standard, echo = FALSE, housing_interactive, single.row = TRUE,

header = FALSE)

Table 5:

Dependent variable:
scale(price)

scale(nox) −0.340∗∗∗ (0.044)
scale(crime) −0.143∗∗∗ (0.031)
scale(rooms) 0.514∗∗∗ (0.030)
scale(dist) −0.235∗∗∗ (0.043)
scale(stratio) −0.270∗∗∗ (0.030)
Observations 506
R2 0.636
Adjusted R2 0.632
Residual Std. Error 0.606 (df = 501)
F Statistic 174.822∗∗∗ (df = 5; 501)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 6:

FALSE

Table 7:

Dependent variable:
lprice

lnox −0.902∗∗∗ (0.115)
log(dist) −0.087∗∗ (0.043)
rooms −0.545∗∗∗ (0.165)
I(roomŝ 2) 0.062∗∗∗ (0.013)
stratio −0.048∗∗∗ (0.006)
Constant 13.385∗∗∗ (0.566)
Observations 506
R2 0.603
Adjusted R2 0.599
Residual Std. Error 0.259 (df = 500)
F Statistic 151.770∗∗∗ (df = 5; 500)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Chapter 7: Multiple Regression Analysis with Qualitative Information

Example 7.4: Housing Price Regression, Qualitative Binary variable

This time we use the hrpice1 data.

data(hrpice1)

Having just worked with hrpice2, it may be helpful to view the documentation on this data set and read the
variable names.
?hprice1

̂log(price) = β0 + β1log(lotsize) + β2log(sqrft) + β3bdrms+ β4colonial

Estimate the coefficients of the above linear model on the hprice data set.
housing_qualitative <- lm(lprice ~ llotsize + lsqrft + bdrms + colonial, data = hprice1)

stargazer(housing_qualitative, single.row = TRUE, header = FALSE)

Table 8:

Dependent variable:
lprice

llotsize 0.168∗∗∗ (0.038)
lsqrft 0.707∗∗∗ (0.093)
bdrms 0.027 (0.029)
colonial 0.054 (0.045)
Constant −1.350∗∗ (0.651)
Observations 88
R2 0.649
Adjusted R2 0.632
Residual Std. Error 0.184 (df = 83)
F Statistic 38.378∗∗∗ (df = 4; 83)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Summary from the text:

“All the variables are self-explanatory except colonial, which is a binary variable equal to one if
the house is of the colonial style. What does the coefficient on colonial mean? For given levels of
lotsize, sqrt, and bdrms, the difference in ̂log(price) between a house of colonial style and that
of another style is 0.54. This means that colonial-style house is predicted to sell for about 5.4%
more, holding other factors fixed.”
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Chapter 8: Heteroskedasticity

Example 8.9: Determinants of Personal Computer Ownership

“We use the data in GPA1 to estimate the probability of owning a computer. Let PC denote a
binary indicator equal to unity if the student owns a computer, and zero otherwise. The variable
hsGPA is high school GPA, ACT is achievement test score, and parcoll is a binary indicator
equal to unity if at least one parent attended college.”

“The equation estimated by OLS is:”

P̂C = β0 + β1hsGPA+ β2ACT + β3parcoll + β4colonial

Create a new variable combining thefathcoll and mothcoll, into parcoll. This new column indicates if
either parent went to college.
data("gpa1")
gpa1$parcoll <- as.integer(gpa1$fathcoll==1 | gpa1$mothcoll)

GPA_OLS <- lm(PC ~ hsGPA + ACT + parcoll, data = gpa1)

“Just as with example 8.8, there are no striking differences between the usual and robust standard
errors. Nevertheless, we also estimate the model by Weighted Least Squares or WLS. Because all
of the OLS fitted values are inside the unit interval, no adjustments are needed”

First, calculate the weights and then pass them to the same linear model.
weights <- GPA_OLS$fitted.values * (1-GPA_OLS$fitted.values)

GPA_WLS <- lm(PC ~ hsGPA + ACT + parcoll, data = gpa1, weights = 1/weights)

Compare the OLS and WLS model in the table below:
stargazer(GPA_OLS, GPA_WLS, single.row = TRUE, header = FALSE)

Table 9:

Dependent variable:
PC

(1) (2)
hsGPA 0.065 (0.137) 0.033 (0.130)
ACT 0.001 (0.015) 0.004 (0.015)
parcoll 0.221∗∗ (0.093) 0.215∗∗ (0.086)
Constant −0.0004 (0.491) 0.026 (0.477)
Observations 141 141
R2 0.042 0.046
Adjusted R2 0.021 0.026
Residual Std. Error (df = 137) 0.486 1.016
F Statistic (df = 3; 137) 1.979 2.224∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

“There are no important differences in the OLS and WLS estimates. The only significant
explanatory variable is parcoll, and in both cases we estimate that the probability of PC
ownership is about .22 higher if at least on parent attended college”
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Chapter 9: More on Specification and Data Issues

Example 9.8: R&D Intensity and Firm Size

“Suppose the R&D expenditures as a percentage of sales, rdintens, are realted to sales (in
millions) and profits as a percentage of sales, profmarg:”

rdintens = β0 + β1sales+ β2profmarg + µ

“The OLS equation using data on 32 chemical companies in rdchem is”

Load the data, run the model, and apply the summary diagnostics function to the model.
data(rdchem)

all_rdchem <- lm(rdintens ~ sales + profmarg, data = rdchem)

Neither sales nor profmarg is statistically significant at even the 10% level in this regression.

Of the 32 firms, 31 have annual sales less than 20 billion. One firm has annual sales of almost 40 billions.
Figure 9.1 shows how far this firm is from the rest of the sample.
plot(rdintens ~ sales, pch = 21, bg = "lightblue", data = rdchem, main = "FIGURE 9.1: Scatterplot of R&D intensity against firm sales",

xlab = "firm sales (in millions of dollars)", ylab = "R&D as a percentage of sales")
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“In terms of sales, this firm is over twice as large as every other firm, so it might be a good idea
to estimate the model without it. When we do this, we obtain:”

smallest_rdchem <- lm(rdintens ~ sales + profmarg, data = rdchem,
subset = (sales < max(sales)))
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The table below compares the results of both models side by side. By removing the outlier firm, sales become
a more significant determination of R&D expenditures.
stargazer(all_rdchem, smallest_rdchem, single.row = TRUE, header = FALSE)

Table 10:

Dependent variable:
rdintens

(1) (2)
sales 0.0001 (0.00004) 0.0002∗∗ (0.0001)
profmarg 0.045 (0.046) 0.048 (0.044)
Constant 2.625∗∗∗ (0.586) 2.297∗∗∗ (0.592)
Observations 32 31
R2 0.076 0.173
Adjusted R2 0.012 0.114
Residual Std. Error 1.862 (df = 29) 1.792 (df = 28)
F Statistic 1.195 (df = 2; 29) 2.925∗ (df = 2; 28)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Chapter 10: Basic Regression Analysis with Time Series Data

Example 10.2: Effects of Inflation and Deficits on Interest Rates

“The data in INTDEF data come from the 2004 Economic Report of the President (Tables B-73
and B-79) and span the years 1948 through 2003. The variable i3 is the three-month T-bill rate,
inf is the annual inflation rate based on the consumer price index (CPI), and def is the federal
budget deficit as a percentage of GDP. The estimated equation is:”

î3 = β0 + β1inft + β2deft

data("intdef")

tbill_model <- lm(i3 ~ inf + def, data = intdef)

stargazer(tbill_model, single.row = TRUE, header = FALSE)

Table 11:

Dependent variable:
i3

inf 0.606∗∗∗ (0.082)
def 0.513∗∗∗ (0.118)
Constant 1.733∗∗∗ (0.432)
Observations 56
R2 0.602
Adjusted R2 0.587
Residual Std. Error 1.843 (df = 53)
F Statistic 40.094∗∗∗ (df = 2; 53)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

“These estimates show that increases in inflation or the relative size of the deficit increase short-
term interest rates, both of which are expected from basic economics. For example, a ceteris
paribus one percentage point increase in the inflation rate increases i3 by .606 points. Both inf
and def are very statistically significant, assuming, of course, that the CLM assumptions hold.”

Example 10.11: Seasonal Effects of Antidumping Filings

In Example 10.5, we used monthly data (in the file BARIUM) that have not been seasonally adjusted.
data("barium")
barium_imports <- lm(lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 +

afdec6, data = barium)

“Therefore, we should add seasonal dummy variables to make sure none of the important
conclusions change. It could be that the months just before the suit was filed are months where
imports are higher or lower, on average, than in other months.”

barium_seasonal <- lm(lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 +
afdec6 + feb + mar + apr + may + jun + jul + aug + sep + oct + nov + dec,
data = barium)

barium_anova <- anova(barium_imports, barium_seasonal)
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stargazer(barium_imports, barium_seasonal, single.row = TRUE, header = FALSE)

Table 12:

Dependent variable:
lchnimp

(1) (2)
lchempi 3.117∗∗∗ (0.479) 3.265∗∗∗ (0.493)
lgas 0.196 (0.907) −1.278 (1.389)
lrtwex 0.983∗∗ (0.400) 0.663 (0.471)
befile6 0.060 (0.261) 0.140 (0.267)
affile6 −0.032 (0.264) 0.013 (0.279)
afdec6 −0.565∗ (0.286) −0.521∗ (0.302)
feb −0.418 (0.304)
mar 0.059 (0.265)
apr −0.451∗ (0.268)
may 0.033 (0.269)
jun −0.206 (0.269)
jul 0.004 (0.279)
aug −0.157 (0.278)
sep −0.134 (0.268)
oct 0.052 (0.267)
nov −0.246 (0.263)
dec 0.133 (0.271)
Constant −17.803 (21.045) 16.779 (32.429)
Observations 131 131
R2 0.305 0.358
Adjusted R2 0.271 0.262
Residual Std. Error 0.597 (df = 124) 0.601 (df = 113)
F Statistic 9.064∗∗∗ (df = 6; 124) 3.712∗∗∗ (df = 17; 113)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

stargazer(barium_anova, single.row = TRUE, header = FALSE)

Table 13:

Statistic N Mean St. Dev. Min Max
Res.Df 2 118.500 7.778 113 124
RSS 2 42.545 2.406 40.844 44.247
Df 1 11.000 11 11
Sum of Sq 1 3.403 3.403 3.403
F 1 0.856 0.856 0.856
Pr(>F) 1 0.585 0.585 0.585

“When we add the 11 monthly dummy variables as in 10.41 and test their joint significance, we
obtain p − value = 5.5852, and so the seasonal dummies are jointly insignificant. In addition,
nothing important changes in the estimates once statistical significance is taken into account.
Krupp and Pollard (1996) actually used three dummy variables for the seasons (fall, spring, and
summer, with winter as the base season), rather than a full set of monthly dummies; the outcome
is essentially the same.”

13



Chapter 11: Further Issues in Using OLS with with Time Series Data

Example 11.7: Wages and Productivity

“The variable hrwage is average hourly wage in the U.S. economy, and outphr is output per hour.
One way to estimate the elasticity of hourly wage with respect to output per hour is to estimate
the equation:”

̂log(hrwaget) = β0 + β1log(outphrt) + β2t+ µt

“where the time trend is included because log(hrwage) and log(outphr) both display clear, upward,
linear trends. Using the data in ‘EARNS’ for the years 1947 through 1987, we obtain:”

data("earns")

wage_time <- lm(lhrwage ~ loutphr + t, data = earns)

“(We have reported the usual goodness-of-fit measures here; it would be better to report those
based on the detrended dependent variable, as in Section 10.5.). The estimated elasticity seems too
large: a 1% increase in productivity increases real wages by about 1.64%. Because the standard
error is so small, the 95% confidence interval easily excludes a unit elasticity. U.S. workers would
probably have trouble believing that their wages increase by more than 1.5% for every 1% increase
in productivity.”

“The regression results must be viewed with caution. Even after linearly detrending log(hrwage),
the first order autocorrelation is .967, and for detrended log(outphr), p̂ = 0.945. These suggest
that both series have unit roots, so we reestimate the equation in first differences (and we no
longer need a time trend):”

wage_diff <- lm(diff(lhrwage) ~ diff(loutphr), data = earns)

stargazer(wage_time, wage_diff, single.row = TRUE, header = FALSE)

Table 14:

Dependent variable:
lhrwage diff(lhrwage)

(1) (2)
loutphr 1.640∗∗∗ (0.093)
t −0.018∗∗∗ (0.002)
diff(loutphr) 0.809∗∗∗ (0.173)
Constant −5.328∗∗∗ (0.374) −0.004 (0.004)
Observations 41 40
R2 0.971 0.364
Adjusted R2 0.970 0.348
Residual Std. Error (df = 38) 0.029 0.017
F Statistic 641.224∗∗∗ (df = 2; 38) 21.771∗∗∗ (df = 1; 38)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

“Now, a 1% increase in productivity is estimated to increase real wages by about 0.81%, and the
estimate is not statistically different from one. The adjusted R2 shows that the growth in output
explains about 35% of the growth in real wages.”
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Chapter 12: Serial Correlation and Heteroskedasticiy in Time Series Regressions

Example 12.4: Prais-Winsten Estimation in the Event Study

“Again using the data in BARIUM, we estimate the equation in Example 10.5 using iterated
Prais-Winsten estimation.”

“The coefficients that are statistically significant in the Prais-Winsten estimation do not differ
by much from the OLS estimates [in particular, the coefficients on log(chempi), log(rtwex), and
afdec6]. It is not surprising for statistically insignificant coefficients to change, perhaps markedly,
across different estimation methods.

First, run the linear model from example 10.5 and 10.11.
data("barium")
barium_model <- lm(lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6,

data = barium)

Then load the prais package and use the prais.winsten function to estimate the same model.
library(prais)
barium_prais_winsten <- prais.winsten(lchnimp ~ lchempi + lgas + lrtwex + befile6 +

affile6 + afdec6, data = barium)

Print the names of both models to the console to compare the results of both.
barium_model

##
## Call:
## lm(formula = lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 +
## afdec6, data = barium)
##
## Coefficients:
## (Intercept) lchempi lgas lrtwex befile6
## -17.80300 3.11719 0.19635 0.98302 0.05957
## affile6 afdec6
## -0.03241 -0.56524
barium_prais_winsten

## [[1]]
##
## Call:
## lm(formula = fo)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.01146 -0.39152 0.06758 0.35063 1.35021
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## Intercept -37.07771 22.77830 -1.628 0.1061
## lchempi 2.94095 0.63284 4.647 8.46e-06 ***
## lgas 1.04638 0.97734 1.071 0.2864
## lrtwex 1.13279 0.50666 2.236 0.0272 *
## befile6 -0.01648 0.31938 -0.052 0.9589
## affile6 -0.03316 0.32181 -0.103 0.9181
## afdec6 -0.57681 0.34199 -1.687 0.0942 .
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5733 on 124 degrees of freedom
## Multiple R-squared: 0.9841, Adjusted R-squared: 0.9832
## F-statistic: 1096 on 7 and 124 DF, p-value: < 2.2e-16
##
##
## [[2]]
## Rho Rho.t.statistic Iterations
## 0.2932171 3.483363 8

“Notice how the standard errors in the second column are uniformly higher than the standard
errors in column (1). This is common. The Prais-Winsten standard errors account for serial
correlation; the OLS standard errors do not. As we saw in Section 12.1, the OLS standard errors
usually understate the actual sampling variation in the OLS estimates and should not be relied
upon when significant serial correlation is present. Therefore, the effect on Chinese imports after
the International Trade Commissions decision is now less statistically significant than we thought.”

“Finally, an R-squared is reported he PW estimation that is well below the R-squared for the
OLS estimation in this case. However, these R-squareds should not be compared. For OLS, the
R-squared, as usual, is based on the regression with the untransformed dependent and independent
variables. For PW , the R-squared comes from the final regression of the transformed dendent
variable on the transformed independent vari-ables. It is not clear what this R2 actually measuring;
nevertheless, it is traditionally reported.”
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Example 12.8: Heteroskedasticity and the Efficient Markets Hypothesis

“In Example 11.4, we estimated the simple AR(1) model:”

returnt = β0 + β1returnt−1 + µt

“The EMH states that β1 = 0. When we tested this hypothesis using the data in ‘NYSE’, we
obtained tb1 = 1.55 with n = 689.

data("nyse")

return_AR1 <-lm(return ~ return_1, data = nyse)

“With such a large sample, this is not much evidence against the EMH. Although the EMH states
that the expected return given past observable information should be constant, it says nothing
about the conditional variance. In fact, the Breusch-Pagan test for heteroskedasticity entails
regressing the squared OLS residuals µ̂2

t on returnt−1”"

µ̂2
t = β0 + β1returnt−1 + residualt

Calculated µ̂2
t by taking the residuals contained in the return_AR model object and store the results in the

variable named return_mu. Then regress the return_1 variable against the square of return_mu. Notice,
we set data equal to the return_AR objects model matrix, which contains data free of leading missing values
inherent to lagged variables.
return_mu <- residuals(return_AR1)

mu2_hat_model <- lm(return_mu^2 ~ return_1, data = return_AR1$model)

stargazer(return_AR1, mu2_hat_model, single.row = TRUE, header = FALSE)

Table 15:

Dependent variable:
return return_mû 2
(1) (2)

return_1 0.059 (0.038) −1.104∗∗∗ (0.201)
Constant 0.180∗∗ (0.081) 4.657∗∗∗ (0.428)
Observations 689 689
R2 0.003 0.042
Adjusted R2 0.002 0.041
Residual Std. Error (df = 687) 2.110 11.178
F Statistic (df = 1; 687) 2.399 30.055∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

“The t statistic on returnt−1 is about -5.5, indicating strong evidence of heteroskedasticity.
Because the coeffict on returnt−1 is negative, we have the interesting finding that volatility in
stock returns is lower the previous return was high, and vice versa. Therefore, we have found
what is common in many financial studies: the expected value of stock returns does not depend
on past returns, but the variance of returns does.”
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Example 12.9: ARCH in Stock Returns

“In Example 12.8, we saw that there was heteroskedasticity in weekly stock returns. This
heteroskedasticity is actually better characterized by the ARCH model in (12.50). If we compute
the OLS residuals from (12.47), square these, and regress them on the lagged squared residual,
we obtain:”

µ̂2
t = β0 + ˆµ2

t−1 + residualt

We still have return_mu in the working environment so we can use it to create µ̂2
t , (mu2_hat) and ˆµ2

t−1
(mu2_hat_1). Notice the use R’s matrix subset operations to perform the lag operation. We drop the first
observation of mu2_hat and squared the results. Next, we remove the last observation of mu2_hat_1 using
the subtraction operator combined with a call to the NROW function on return_mu. Now, both contain 688
observations and we can run a standard linear model.
mu2_hat <- return_mu[-1]^2

mu2_hat_1 <- return_mu[-NROW(return_mu)]^2

arch_model <- lm(mu2_hat ~ mu2_hat_1)

stargazer(arch_model, single.row = TRUE, header = FALSE)

Table 16:

Dependent variable:
mu2_hat

mu2_hat_1 0.337∗∗∗ (0.036)
Constant 2.947∗∗∗ (0.440)
Observations 688
R2 0.114
Adjusted R2 0.112
Residual Std. Error 10.759 (df = 686)
F Statistic 87.923∗∗∗ (df = 1; 686)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

“The t statistic on ˆµ2
t−1 (mu2_hat_1) is over nine, indicating strong ARCH. As we discussed

earlier, a larger error at time t− 1 implies a larger variance in stock returns today.

“It is important to see that, though the squared OLS residuals are autocorrelated, the OLS
residuals themselves are not (as is consistent with the EMH). Regressing on µ̂t and ˆµt−1 gives
p̂ = 0.0014 with tp̂ = 0.038.
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Chapter 13: Pooling Cross Sections across Time: Simple Panel Data Methods

Example 13.7: Effect of Drunk Driving Laws on Traffic Fatalities

“Many states in the United States have adopted different policies in an attempt to curb drunk
driving. Two types of laws that we will study here are open container laws -which make it illegal
for passengers to have open containers of alcoholic beverages -and administrative per se laws
-which allow courts to suspend licenses after a driver is arrested for drunk driving but before the
driver is convicted. One possible analysis is to use a single cross section of states to regress driving
fatalities (or those related to drunk driving) on dummy variable indicators for whether each law is
present. This is unlikely to work well because states decide, through legislative processes, whether
they need such laws. Therefore, the presence of laws is likely to be related to the average drunk
driving fatalities in recent years. A more convincing analysis uses panel data over a time period
where some states adopted new laws (and some states may have repealed existing laws). The file
TRAFFIC1 contains data for 1985 and 1990 for all 50 states and the District of Columbia. The
dependent variable is the number of traffic deaths per 100 million miles driven (dthrte). In 1985,
19 states had open container laws while 22 states had such laws in 1990. In 1985, 21 states had
per se laws; the number had grown to 29 by 1990. Using OLS after first differencing gives:”

∆̂dthrte = β0 + ∆open+ ∆admin

data("traffic1")
DD_model <- lm(cdthrte ~ copen + cadmn, data = traffic1)

stargazer(DD_model, single.row = TRUE, header = FALSE)

Table 17:

Dependent variable:
cdthrte

copen −0.420∗∗ (0.206)
cadmn −0.151 (0.117)
Constant −0.497∗∗∗ (0.052)
Observations 51
R2 0.119
Adjusted R2 0.082
Residual Std. Error 0.344 (df = 48)
F Statistic 3.231∗∗ (df = 2; 48)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

“The estimates suggest that adopting an open container law lowered the traffic fatality rate
by 0.42, a nontrivial effect given that the average death rate in 1985 was 2.7 with a standard
deviation of about 0.6. The estimate is statistically significant at the 5% level against a twosided
alternative. The administrative per se law has a smaller effect, and its t statistic is only -1.29; but
the estimate is the sign we expect. The intercept in this equation shows that traffic fatalities fell
substantially for all states over the five-year period, whether or not there were any law changes.
The states that adopted an open container law over this period saw a further drop, on average, in
fatality rates.”

“Other laws might also affect traffic fatalities, such as seat belt laws, motorcycle helmet laws, and
maximum speed limits. In addition, we might want to control for age and gender distributions, as
well as measures of how influential an organization such as Mothers Against Drunk Driving is in
each state.”
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Chapter 14: Advanced Panel Data Methods

Example 14.1: Effect of Job Training on Firm Scrap Rates

“We use the data for three years, 1987, 1988, and 1989, on the 54 firms that reported scrap rates
in each year. No firms received grants prior to 1988; in 1988, 19 firms received grants; in 1989, 10
different firms received grants. Therefore, we must also allow for the possibility that the additional
job training in 1988 made workers more productive in 1989. This is easily done by including a
lagged value of the grant indicator. We also include year dummies for 1988 and 1989.

library(plm)

## Loading required package: Formula
data("jtrain")
scrap_panel <- plm(lscrap ~ d88 + d89 + grant + grant_1, data = jtrain, index = c("fcode",

"year"), model = "within", effect = "individual")

stargazer(scrap_panel, single.row = TRUE, header = FALSE)

Table 18:

Dependent variable:
lscrap

d88 −0.080 (0.109)
d89 −0.247∗ (0.133)
grant −0.252∗ (0.151)
grant_1 −0.422∗∗ (0.210)
Observations 162
R2 0.201
Adjusted R2 −0.237
F Statistic 6.543∗∗∗ (df = 4; 104)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

“We have reported the results in a way that emphasizes the need to interpret the estimates in
light of the unobserved effects model, (14.4). We are explicitly controlling for the unobserved,
time-constant effects in αi. The time-demeaning allows us to estimate the βj , but (14.5) is not
the best equation for interpreting the estimates.

“Interestingly, the estimated lagged effect of the training grant is substantially larger than the
contemporaneous effect: job training has an effect at least one year later. Because the dependent
variable is in logarithmic form, obtaining a grant in 1988 is predicted to lower the firm scrap rate
in 1989 by about 34.4% [exp(−0.422)− 1 ≈ −0.344]; the coefficient on grant1 is significant at the
5% level against a twosided alternative. The coefficient grant is significant at the 10% level, and
the size of the coefficient is hardly trivial. Notice the df is obtained as N(T-1) - k = 54(3-1)-4 =
104”

“The coefficient on d89 indicates that the scrap rate was substantially lower in 1989 than in the
base year, 1987, even in the absence of job training grants. Thus, it is important to allow for these
aggregate effects. If we omitted the year dummies, the secular increase in worker productivity
would be attributed to the job training grants. The diagnostic results above shows that, even
after controlling for aggregate trends in productivity, the job training grants had a large estimated
effect.”

“Finally, it is crucial to allow for the lagged effect in the model. If we omit grant1, then we are
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assuming that the effect of job training does not last into the next year. The estimate on grant
when we drop grant1 is -0.082 t = −0.65; this is much smaller and statistically insignificant.”

Chapter 15: Instrumental Variables Estimation and Two Stage Least Squares

Example 15.1: Estimating the Return to Education for Married Women

“We use the data on married working women in mroz to estimate the return to education in the
simple regression model”

log(wage) = β0 + β1educ+ µ

“For comparison, we first obtain the OLS estimates:”
data("mroz")
wage_educ_model <- lm(lwage ~ educ, data = mroz)

“The estimate for β1 implies an almost 11% return for another year of education.”

“Next, we use father’s education fatheduc as an instrumental variable for educ. We have to
maintain that fatheduc is uncorrelated with µ. The second requirement is that educ and fatheduc
are correlated. We can check this very easily using a simple regression of educ on fatheduc, using
only the working women in the sample:”

êduc = β0 + β1fatheduc

We run the typical linear model, but notice the use of the subset argument. inlf is a binary variable in
which a value of 1 means they are “In the Labor Force”. By sub-setting the mroz data.frame by observations
in which inlf==1, only working women will be in the sample.
fatheduc_model <- lm(educ ~ fatheduc, data = mroz, subset = (inlf==1))

“The t statistic on fatheduc is 9.42, which indicates that educ and fatheduc have a statistically
significant positive correlation. In fact, fatheduc explains about 17% of the variation in educ in
the sample. Using fatheduc as an IV for educ gives:”

In this section, we will perform an Instrumental-Variable Regression, using the ivreg function in the
AER (Applied Econometrics with R) package.
library("AER")

## Warning: package 'car' was built under R version 3.4.1
wage_educ_IV <- ivreg(lwage ~ educ | fatheduc, data = mroz)

stargazer(wage_educ_model, fatheduc_model, wage_educ_IV, single.row = TRUE,
header = FALSE)

“The IV estimate of the return to education is 5.9%, which is barely more than one half of the
OLS. This suggests that the OLS estimate is too high and is consistent with omitted ability
bias. But we should remember that these are estimates from just one sample: we can never know
whether 0.109 is above the true return to education, or whether 0.059 is closer to the true return
to education. Further, the standard error of the IV estimate is two and one-half times as large as
the OLS standard error this is expected, for the reasons we gave earlier. The 95% confidence
interval for using OLS is much tighter than that using the IV . In fact, the IV confidence interval
actuay contains the OLS estimate. Therefore, although the differences between 15.15 and 15.17
are practically large, we cannot say whether the difference is statistically significant. We will show
how to test this in Section 15.5.”
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Table 19:

Dependent variable:
lwage educ lwage
OLS OLS instrumental

variable
(1) (2) (3)

educ 0.109∗∗∗ (0.014) 0.059∗ (0.035)
fatheduc 0.269∗∗∗ (0.029)
Constant −0.185 (0.185) 10.237∗∗∗ (0.276) 0.441 (0.446)
Observations 428 428 428
R2 0.118 0.173 0.093
Adjusted R2 0.116 0.171 0.091
Residual Std. Error (df = 426) 0.680 2.081 0.689
F Statistic (df = 1; 426) 56.929∗∗∗ 88.841∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Example 15.2: Estimating the Return to Education for Men

“We now use wage2 data to estimate the return to education for men. We use the variable sibs,
or number of siblings, as an instrument for educ. These are negatively correlated, as we can verify
from a simple regression:”

êduc = β0 + sibs

data("wage2")

educ_sibs_model <- lm(educ ~ sibs, data = wage2)

“This equation implies that every sibling is associated with, on average, about 0.23 less of a year
of education. If we assume that sibs is uncorrelated with the error term in 15.14, then the IV
estimator is consistent. Estimating equation 15.14 from example 15.1, using sibs as an IV for
educ gives:”

̂log(wage) = β0 + educ

In this section, we will perform an Instrumental-Variable Regression, using the ivreg function in the
AER (Applied Econometrics with R) package.
library("AER")

educ_sibs_IV <- ivreg(lwage ~ educ | sibs, data = wage2)

stargazer(educ_sibs_model, educ_sibs_IV, wage_educ_IV, single.row = TRUE, header = FALSE)

“For comparison, the OLS estimate of β1 is 0.059 with a standard error of 0.006. Unlike in the
previous example, the IV estimate is now much higher than the OLS estimate. While we do
not know whether the difference is statistically significant, this does not mesh with the omitted
ability bias from OLS. It could be that sibs is also correlated with ability: more siblings means,
on average, less parental attention, which could result in lower ability. Another interpretation is
that the OLS estimator is biased toward zero because of measurement error in educ. This is not
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Table 20:

Dependent variable:
educ lwage
OLS instrumental

variable
(1) (2) (3)

sibs −0.228∗∗∗ (0.030)
educ 0.122∗∗∗ (0.026) 0.059∗ (0.035)
Constant 14.139∗∗∗ (0.113) 5.130∗∗∗ (0.355) 0.441 (0.446)
Observations 935 935 428
R2 0.057 −0.009 0.093
Adjusted R2 0.056 −0.010 0.091
Residual Std. Error 2.134 (df = 933) 0.423 (df = 933) 0.689 (df = 426)
F Statistic 56.667∗∗∗ (df = 1; 933)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

entirely convincing because, as we discussed in Section 9.3, educ is unlikely to satisfy the classical
errors-in-variables model.”

Example 15.5: Return to Education for Working Women

“We estimate equation 15.40 using the data in mroz. First, we test H0 : π3 = 0, π4 = 0 in
15.41using an F test. The result is F = 55.40, and p − value = 0.0000. As expected, educ is
partially correlated with parents education.”

“When we estimate 15.40 by 2SLS, we obtain, in equation form,”

̂log(wage) = β0 + β1educ+ β2exper + β3exper
2

data("mroz")
wage_educ_exper_IV <- ivreg(lwage ~ educ + exper + expersq | exper + expersq +

motheduc + fatheduc, data = mroz)

Table 21:

Dependent variable:
lwage

educ 0.061∗ (0.031)
exper 0.044∗∗∗ (0.013)
expersq −0.001∗∗ (0.0004)
Constant 0.048 (0.400)
Observations 428
R2 0.136
Adjusted R2 0.130
Residual Std. Error 0.675 (df = 424)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

“The estimated return to education is about 6.1%, compared with an OLS estimate of about
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10.8%. Because of its relatively large standard error, the 2SLS estimate is barely statistically
significant at the 5% level against a two-sided alternative.”

Chapter 16: Simultaneous Equations Models

Example 16.4: INFLATION AND OPENNESS

“Romer (1993) proposes theoretical models of inflation that imply that more”open" countries
should have lower inflation rates. His empirical analysis explains average annual inflation rates
(since 1973) in terms of the average share of imports in gross domestic product since 1973 -
which is his measure of openness. In addition to estimating the key equation by OLS, he uses
instrumental variables. While Romer does not specify both equations in a simultaneous system,
he has in mind a two-equation system:"

inf = β10 + α1open+ β11log(pcinc) + µ1

open = β20 + α2inf + β21log(pcinc) + β22log(land) + µ2

“where pcinc is 1980 per capita income, in U.S. dollars, assumed to be exogenous, and land is the
land area of the country in square miles, also assumed to be exogenous. The first equation is the
one of interest, with the hypothesis that α < 0. More open economies have lower inflation rates.”

“The second equation reflects the fact that the degree of openness might depend on the average
inflation rate, as well as other factors. The variable log(pcinc) appears in both equations, but
log(land) is assumed to appear only in the second equation. The idea is that, ceteris paribus, a
smaller country is likely to be more open, so β22 < 0.”

“Using the identification rule that was stated earlier, the first equation is identified, provided
β22 6= 0. The second equation is not identified because it contains both exogenous variables. Be
we are interested in the first equation.

Example 16.6: INFLATION AND OPENNESS

“Before we estimate the first equation in 16.4 using the data in openness, we check to see
whether open has sufficient partial correlation with the proposed IV , log(land). The reduced
form regression is:”

ôpen = β0 + β1log(pcinc) + β2log(land)

data("openness")

open_model <-lm(open ~ lpcinc + lland, data = openness)

“The t statistic on log(land) is over nine in absolute value, which verifies Romer’s assertion that
smaller countries are more open. The fact that log(pcinc) is so insignificant in this regression is
irrelevant.”

“Estimating the first equation using log(land) as an IV for open gives:”

înf = β0 + β1open+ β2log(pcinc)

library(AER)

inflation_IV <- ivreg(inf ~ open + lpcinc | lpcinc + lland, data = openness)
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stargazer(open_model, inflation_IV, single.row = TRUE, header = FALSE)

Table 22:

Dependent variable:
open inf
OLS instrumental

variable
(1) (2)

open −0.337∗∗ (0.144)
lpcinc 0.546 (1.493) 0.376 (2.015)
lland −7.567∗∗∗ (0.814)
Constant 117.085∗∗∗ (15.848) 26.899∗ (15.401)
Observations 114 114
R2 0.449 0.031
Adjusted R2 0.439 0.013
Residual Std. Error (df = 111) 17.796 23.836
F Statistic 45.165∗∗∗ (df = 2; 111)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

“The coefficient on open is statistically significant at about the 1% level against a one sided
alternative of α1 < 0. The effect is economically important as well: for every percentage point
increase in the import share of GDP, annual inflation is about 1/3 of a percentage point lower.
For comparison, the OLS estimate is -0.215, se = 0.095.”"
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Chapter 17: Limited Dependent Variable Models and Sample Selection Correc-
tions

Example 17.3: POISSON REGRESSION FOR NUMBER OF ARRESTS

“We now apply the Poisson regression model to the arrest data in crime1 data, used, among
other places, in Example 9.1. The dependent variable, narr86, is the number of times a man is
arrested during 1986. This variable is zero for 1,970 of the 2,725 men in the sample, and only
eight values of narr86 are greater than five. Thus, a Poisson regression model is more appropriate
than a linear regression model. The table below also presents the results of OLS estimation of a
linear regression model.”

data("crime1")

formula <- (narr86 ~ pcnv + avgsen + tottime + ptime86 + qemp86 + inc86 + black +
hispan + born60)

econ_crime_model <- lm(formula, data = crime1)

econ_crim_poisson <- glm(formula, data = crime1, family = poisson)

stargazer(econ_crime_model, econ_crim_poisson, single.row = TRUE, header = FALSE)

Table 23:

Dependent variable:
narr86

OLS Poisson
(1) (2)

pcnv −0.132∗∗∗ (0.040) −0.402∗∗∗ (0.085)
avgsen −0.011 (0.012) −0.024 (0.020)
tottime 0.012 (0.009) 0.024∗ (0.015)
ptime86 −0.041∗∗∗ (0.009) −0.099∗∗∗ (0.021)
qemp86 −0.051∗∗∗ (0.014) −0.038 (0.029)
inc86 −0.001∗∗∗ (0.0003) −0.008∗∗∗ (0.001)
black 0.327∗∗∗ (0.045) 0.661∗∗∗ (0.074)
hispan 0.194∗∗∗ (0.040) 0.500∗∗∗ (0.074)
born60 −0.022 (0.033) −0.051 (0.064)
Constant 0.577∗∗∗ (0.038) −0.600∗∗∗ (0.067)
Observations 2,725 2,725
R2 0.072
Adjusted R2 0.069
Log Likelihood −2,248.761
Akaike Inf. Crit. 4,517.522
Residual Std. Error 0.829 (df = 2715)
F Statistic 23.572∗∗∗ (df = 9; 2715)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

“The standard errors for OLS are the usual ones; we could certainly have made these robust to
heteroskedasticity. The standard errors for Poisson regression are the usual maximum likelihood
standard errors. Because σ̂ = 1.232, the standard errors for Poisson regression should be inflated
by this factor (so each corrected standard error is about 23% higher). For example, a more reliable
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standard error for tottime is 1.23(.015) ≈ 0.0185, which gives a t statistic of about 1.3. The
adjustment to the standard errors reduces the significance of all variables, but several of them are
still very statistically significant.”

“The OLS and Poisson coefficients are not directly comparable, and they have very different
meanings. For example, the coefficient on pcnv implies that, if ∆pcnv = −.10, the expected
number of arrests falls by 0.013 (pcnv is the proportion of prior arrests that led to conviction). The
Poisson coefficient implies that ∆pncv = 0.10 reduces expected arrests by about 4% [0.402(.10) =
0.0402, and we multiply this by 100 to get the percentage effect]. As a policy matter, this suggests
we can reduce overall arrests by about 4% if we can increase the probability of conviction by 0.1.”
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Chapter 18: Advanced Time Series Topics

Example 18.8: FORECASTING THE U.S. UNEMPLOYMENT RATE

“We use the PHILLIPS data set, but only for the years 1948 through 1996, to forecast the U.S.
civilian unemployment rate for 1997. We use two models. The first is a simple AR(1) model for
unem:”

̂unempt = β0 + β1unemt−1

> “In a second model, we add inflation with a lag of one year:”

̂unempt = β0 + β1unemt−1 + β2inft−1

data("phillips")

unem_AR1 <- lm(unem ~ unem_1, data = phillips, subset = (year <= 1996))

unem_inf_VAR1 <- lm(unem ~ unem_1 + inf_1, data = phillips, subset = (year <= 1996))

Table 24:

Dependent variable:
unem

(1) (2)
unem_1 0.732∗∗∗ (0.097) 0.647∗∗∗ (0.084)
inf_1 0.184∗∗∗ (0.041)
Constant 1.572∗∗∗ (0.577) 1.304∗∗ (0.490)
Observations 48 48
R2 0.554 0.691
Adjusted R2 0.544 0.677
Residual Std. Error 1.049 (df = 46) 0.883 (df = 45)
F Statistic 57.132∗∗∗ (df = 1; 46) 50.219∗∗∗ (df = 2; 45)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

“The lagged inflation rate is very significant in the second model (t ≈ 4.5), and the adjusted
R-squared much higher than that from the first. Nevertheless, this does not necessarily mean that
the second equation will produce a better forecast for 1997. All we can say so far is that, using
the data up through 1996, a lag of inflation helps to explain variation in the unemployment rate.”

“To obtain the forecasts for 1997, we need to know unemployment and inflation in 1996. These
are 5.4 and 3.0, respectively. Therefore, the forecast of unem1997 from the first equation is 1.572 +
.732(5.4), or about 5.52. The forecast from the second equation is 1.304+0.647(5.4)+0.184(3.0), or
about 5.35. The actual civilian unemployment rate for 1997 was 4.9, so both equations overpredict
the actual rate. The second equation does provide a somewhat better forecast.”

“We can easily obtain a 95% forecast interval. When we regress unem1 on (unemt−1 − 5.4) and
(inft−1 − 3.0), we obtain 5.35 as the intercept - which we already computed as the forecast - and
se(f̂n) = 0.137. Therefore, because σ̂ = 0.883, we have se( ˆen+1) = [(0.137)2 +(0.883)2]1/2 ≈ 0.894.
The 95% forecast interval of f̂n+

− 1.96 ∗ se( ˆen−1) is 5.35 +
− 1.96(0.894), or about [3.6, 7.1]. This is

a wide interval, and the realized 1997 value, 4.9, is well within the interval. As expected, the
standard error of µn+1, which is .883, is a very large fraction of se( ˆen−1)”
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