CRAN Package Check Results for Package bpp

Last updated on 2025-04-22 02:49:57 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.0.6 2.18 235.25 237.43 OK
r-devel-linux-x86_64-debian-gcc 1.0.6 1.86 328.99 330.85 ERROR
r-devel-linux-x86_64-fedora-clang 1.0.6 140.24 OK
r-devel-linux-x86_64-fedora-gcc 1.0.6 182.71 OK
r-devel-windows-x86_64 1.0.6 4.00 76.00 80.00 OK
r-patched-linux-x86_64 1.0.6 2.84 132.85 135.69 OK
r-release-linux-x86_64 1.0.6 2.41 90.59 93.00 OK
r-release-macos-arm64 1.0.6 39.00 OK
r-release-macos-x86_64 1.0.6 179.00 OK
r-release-windows-x86_64 1.0.6 5.00 94.00 99.00 OK
r-oldrel-macos-arm64 1.0.6 80.00 OK
r-oldrel-macos-x86_64 1.0.6 161.00 OK
r-oldrel-windows-x86_64 1.0.6 4.00 115.00 119.00 OK

Check Details

Version: 1.0.6
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: ... --- re-building ‘bpp.Rmd’ using rmarkdown bpp_1interim package:bpp R Documentation _<08>B_<08>a_<08>y_<08>e_<08>s_<08>i_<08>a_<08>n _<08>P_<08>r_<08>e_<08>d_<08>i_<08>c_<08>t_<08>i_<08>v_<08>e _<08>P_<08>o_<08>w_<08>e_<08>r (_<08>B_<08>P_<08>P) _<08>f_<08>o_<08>r _<08>N_<08>o_<08>r_<08>m_<08>a_<08>l_<08>l_<08>y _<08>D_<08>i_<08>s_<08>t_<08>r_<08>i_<08>b_<08>u_<08>t_<08>e_<08>d _<08>E_<08>n_<08>d_<08>p_<08>o_<08>i_<08>n_<08>t _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: Compute BPP and posterior density for a Normally distributed endpoint, e.g. log(hazard ratio), assuming either an unblinded or blinded interim result. _<08>U_<08>s_<08>a_<08>g_<08>e: bpp_1interim(prior = c("normal", "flat"), interimSE, finalSE, successmean, IntEffBoundary, IntFutBoundary, IntFix, priormean, propA = 0.5, thetas, ...) _<08>A_<08>r_<08>g_<08>u_<08>m_<08>e_<08>n_<08>t_<08>s: prior: Prior density on effect sizes. interimSE: (Known) standard error of estimate at interim analysis. finalSE: (Known) standard error at which the final analysis of the study under consideration takes place. successmean: The mean that defines success at the final analysis. Typically chosen to be the minimal detectable difference, i.e. the critical on the scale of the effect size of interest corresponding to the significance level at the final analysis. IntEffBoundary: Efficacy boundary at the interim analysis. IntFutBoundary: Futility boundary at the interim analysis. IntFix: Effect sizes observed at the interim analyis, to compute BPP for an unblinded interim analysis. priormean: Prior mean. propA: Proportion of subjects randomized to arm A. thetas: Grid to compute posterior density on. ...: Further arguments specific to the chosen prior (see 'bpp_1interim' for examples). _<08>V_<08>a_<08>l_<08>u_<08>e: A list containing the following elements: initial BPP: BPP based on the prior. conditional power interval: Conditional power, updating power at design stage with interval knowledge, i.e. corresponding to 'IntEffBoundary' and 'IntFutBoundary'. BPP after not stopping at interim interval: BPP after not stopping at a blinded interim, provides the results corresponding to 'IntEffBoundary' and 'IntFutBoundary'. BPP after not stopping at interim exact: BPP after not stopping at an unblinded interim, provides the results corresponding to 'IntFix'. posterior density exact: The posterior density, exact knowledge of interim result, i.e. corresponding to 'IntFix'. posterior density interval: The posterior density, interval knowledge, i.e. corresponding to 'IntEffBoundary' and 'IntFutBoundary'. _<08>A_<08>u_<08>t_<08>h_<08>o_<08>r(_<08>s): Kaspar Rufibach (maintainer) <mailto:kaspar.rufibach@roche.com> _<08>R_<08>e_<08>f_<08>e_<08>r_<08>e_<08>n_<08>c_<08>e_<08>s: Rufibach, K., Jordan, P., Abt, M. (2016a). Sequentially Updating the Likelihood of Success of a Phase 3 Pivotal Time-to-Event Trial based on Interim Analyses or External Information. _J. Biopharm. Stat._, *26*(2), 191-201. Rufibach, K., Burger, H.U., Abt, M. (2016b). Bayesian Predictive Power: Choice of Prior and some Recommendations for its Use as Probability of Success in Drug Development. _Pharm. Stat._, *15*, 438-446. _<08>E_<08>x_<08>a_<08>m_<08>p_<08>l_<08>e_<08>s: # ------------------------------------------------------------------------------------------ # Reproduce all the computations in Rufibach et al (2016a) for a Normal prior. # ------------------------------------------------------------------------------------------ # ------------------------------------------ # set all parameters: # ------------------------------------------ # prior mean / sd hr0 <- 0.85 sd0 <- 0.11 priormean <- log(hr0) # specifications for pivotal study propA <- 0.5 # proportion of patients randomized to arm A fac <- (propA * (1 - propA)) ^ (-1) nevents <- c(0.5, 1) * 1600 finalSE <- sqrt(fac / nevents[2]) alphas <- c(0.001, 0.049) za <- qnorm(1 - alphas / 2) hrMDD <- exp(- za * sqrt(fac / nevents)) successmean <- log(hrMDD[2]) # efficacy and futility interim boundary effi <- log(hrMDD[1]) futi <- log(1.025) # grid to compute densities on thetas <- seq(-0.65, 0.3, by = 0.01) # ------------------------------------------ # compare Normal and flat prior density # ------------------------------------------ par(las = 1, mar = c(9, 5, 2, 1), mfrow = c(1, 2)) plot(0, 0, type = "n", xlim = c(-0.6, 0.3), ylim = c(-0.1, 5), xlab = "", ylab = "density", main = "") title(expression("Normal and flat prior density for "*theta), line = 0.7) basicPlot(leg = FALSE, IntEffBoundary = effi, IntFutBoundary = futi, successmean = successmean, priormean = priormean) lines(thetas, dnorm(thetas, mean = log(hr0), sd = sd0), col = 2, lwd = 2) # flat prior: hr0flat <- 0.866 width1 <- 0.21 height1 <- 2.48 lines(thetas, dUniformNormalTails(thetas, mu = log(hr0flat), width = width1, height = height1), lwd = 2, col = 3) # ------------------------------------------ # computations for Normal prior # ------------------------------------------ # prior probabilities to be below 0.7 or above 1: lims <- c(0.7, 1) pnorm1 <- plnorm(lims[1], meanlog = log(hr0), sdlog = sd0, lower.tail = TRUE, log.p = FALSE) # pnorm(log(lims[1]), mean = log(hr0), sd = sd0) pnorm2 <- plnorm(lims[2], meanlog = log(hr0), sdlog = sd0, lower.tail = FALSE, log.p = FALSE) # 1 - pnorm(log(lims[2]), mean = log(hr0), sd = sd0) # initial bpp bpp0 <- bpp(prior = "normal", successmean = successmean, finalSE = finalSE, priormean = log(hr0), priorsigma = sd0) # update prior with first external study hr1 <- 0.396 sd1 <- 0.837 up1 <- NormalNormalPosterior(datamean = log(hr1), sigma = sd1, n = 1, nu = log(hr0), tau = sd0) bpp1 <- bpp(prior = "normal", successmean = successmean, finalSE = finalSE, priormean = up1$postmean, priorsigma = up1$postsigma) # update prior with second external study (result derived from pooled analysis: # Cox regression on patient level, stratified by study): hr2 <- 0.287 sd2 <- 0.658 up2 <- NormalNormalPosterior(datamean = log(hr2), sigma = sd2, n = 1, nu = log(hr0), tau = sd0) bpp2 <- bpp(prior = "normal", successmean = successmean, finalSE = finalSE, priormean = up2$postmean, priorsigma = up2$postsigma) # compute bpp after not stopping at interim: # assuming both boundaries: bpp3.tmp <- bpp_1interim(prior = "normal", interimSE = sqrt(fac / nevents[1]), finalSE = finalSE, successmean = successmean, IntEffBoundary = effi, IntFutBoundary = futi, IntFix = log(1), priormean = up2$postmean, propA = 0.5, thetas, priorsigma = up2$postsigma) bpp3 <- bpp3.tmp$"BPP after not stopping at interim interval" post3 <- bpp3.tmp$"posterior density interval" # assuming only efficacy boundary: bpp3_effi_only <- bpp_1interim(prior = "normal", interimSE = sqrt(fac / nevents[1]), finalSE = finalSE, successmean = successmean, IntEffBoundary = effi, IntFutBoundary = log(Inf), IntFix = log(1), priormean = up2$postmean, propA = 0.5, thetas = thetas, priorsigma = up2$postsigma)$"BPP after not stopping at interim interval" # assuming only futility boundary: bpp3_futi_only <- bpp_1interim(prior = "normal", interimSE = sqrt(fac / nevents[1]), finalSE = finalSE, successmean = successmean, IntEffBoundary = log(0), IntFutBoundary = futi, IntFix = log(1), priormean = up2$postmean, propA = 0.5, thetas = thetas, priorsigma = up2$postsigma)$"BPP after not stopping at interim interval" # assuming interim efficacy boundary: bpp4.tmp <- bpp_1interim(prior = "normal", interimSE = sqrt(fac / nevents[1]), finalSE = finalSE, successmean = successmean, IntEffBoundary = effi, IntFutBoundary = Inf, IntFix = c(effi, futi), priormean = up2$postmean, propA = 0.5, thetas, priorsigma = up2$postsigma) bpp4 <- bpp4.tmp$"BPP after not stopping at interim exact"[2, 1] post4 <- bpp4.tmp$"posterior density exact"[, 1] # assuming interim futility boundary: bpp5.tmp <- bpp_1interim(prior = "normal", interimSE = sqrt(fac / nevents[1]), finalSE = finalSE, successmean = successmean, IntEffBoundary = effi, IntFutBoundary = Inf, IntFix = futi, priormean = up2$postmean, propA = 0.5, thetas, priorsigma = up2$postsigma) bpp5 <- bpp5.tmp$"BPP after not stopping at interim exact"[2, 1] post5 <- bpp5.tmp$"posterior density exact" # same as post4[, 2] # ------------------------------------------ # reproduce plots in paper # ------------------------------------------ # first two updates par(las = 1, mar = c(9, 5, 2, 1), mfrow = c(1, 2)) plot(0, 0, type = "n", xlim = c(-0.6, 0.3), ylim = c(-0.1, 5), xlab = "", ylab = "density", main = "") title(expression("Normal prior density and corresponding posteriors for "*theta), line = 0.7) basicPlot(leg = FALSE, IntEffBoundary = effi, IntFutBoundary = futi, successmean = successmean, priormean = priormean) lines(thetas, dnorm(thetas, mean = log(hr0), sd = sd0), col = 2, lwd = 2) lines(thetas, dnorm(thetas, mean = up1$postmean, sd = up1$postsigma), col = 3, lwd = 2) lines(thetas, dnorm(thetas, mean = up2$postmean, sd = up2$postsigma), col = 4, lwd = 2) lines(thetas, post3, col = 1, lwd = 2) legend(-0.64, 5.2, c("prior", "posterior after Sub1", "posterior after Sub1 & Sub2", "posterior after Sub1 & Sub2 and not stopping at interim"), lty = 1, col = c(2:4, 1), bty = "n", lwd = 2) # posterior densities for interval knowledge and thetahat equal to boundaries: plot(0, 0, type = "n", xlim = c(-0.6, 0.3), ylim = c(-0.1, 8), xlab = "", ylab = "density", main = "") title(expression("Posteriors for "*theta*" after not stopping at interim, for Normal prior"), line = 0.7) basicPlot(leg = FALSE, IntEffBoundary = effi, IntFutBoundary = futi, successmean = successmean, priormean = priormean) lines(thetas, post3, col = 1, lwd = 2) lines(thetas, post4, col = 2, lwd = 2) lines(thetas, post5, col = 3, lwd = 2) leg2 <- c("interval knowledge", expression(hat(theta)*" = efficacy boundary"), expression(hat(theta)*" = futility boundary") ) legend(-0.62, 8.2, leg2, lty = 1, col = 1:3, lwd = 2, bty = "n", title = "posterior after not stopping at interim,") # ------------------------------------------------------------------------------------------ # Reproduce all the computations in Rufibach et al (2016a) for flat prior. # ------------------------------------------------------------------------------------------ # ------------------------------------------ # set all parameters first: # ------------------------------------------ # parameters of flat prior: priormean <- log(hr0flat) # ------------------------------------------ # computations for flat prior # ------------------------------------------ # prior probabilities to be below 0.7 or above 1: lims <- c(0.7, 1) flat1 <- pUniformNormalTails(x = log(lims[1]), mu = priormean, width = width1, height = height1) flat2 <- 1 - pUniformNormalTails(x = log(lims[2]), mu = priormean, width = width1, height = height1) # prior bpp0_1 <- bpp(prior = "flat", successmean = successmean, finalSE = finalSE, priormean = priormean, width = width1, height = height1) # update with first external study hr1 <- 0.396 sd1 <- 0.837 bpp1_1 <- integrate(FlatNormalPosterior, lower = -Inf, upper = Inf, successmean = successmean, finalSE = finalSE, interimmean = log(hr1), interimSE = sd1, priormean = priormean, width = width1, height = height1)$value # update prior (result derived from pooled analysis: Cox regression on patient level, # stratified by study) hr2 <- 0.287 sd2 <- 0.658 bpp2_1 <- integrate(FlatNormalPosterior, -Inf, Inf, successmean = successmean, finalSE = finalSE, interimmean = log(hr2), interimSE = sd2, priormean = priormean, width = width1, height = height1)$value # update after not stopping at interim # first compute synthesized prior: hr0 <- 0.85 sd0 <- 0.11 up2 <- NormalNormalPosterior(datamean = log(hr2), sigma = sd2, n = 1, nu = log(hr0), tau = sd0) # assuming both boundaries: bpp3.tmp_1 <- bpp_1interim(prior = "flat", interimSE = sqrt(fac / nevents[1]), finalSE = finalSE, successmean = successmean, IntEffBoundary = effi, IntFutBoundary = futi, IntFix = log(1), priormean = up2$postmean, propA = 0.5, thetas, width = width1, height = height1) bpp3_1 <- bpp3.tmp_1$"BPP after not stopping at interim interval" post3_1 <- bpp3.tmp_1$"posterior density interval" # assuming only efficacy boundary: bpp3_1_effi_only <- bpp_1interim(prior = "flat", interimSE = sqrt(fac / nevents[1]), finalSE = finalSE, successmean = successmean, IntEffBoundary = effi, IntFutBoundary = log(Inf), IntFix = log(1), priormean = up2$postmean, propA = 0.5, thetas = thetas, width = width1, height = height1)$"BPP after not stopping at interim interval" # assuming only futility boundary: bpp3_1_futi_only <- bpp_1interim(prior = "flat", interimSE = sqrt(fac / nevents[1]), finalSE = finalSE, successmean = successmean, IntEffBoundary = log(0), IntFutBoundary = futi, IntFix = log(1), priormean = up2$postmean, propA = 0.5, thetas = thetas, width = width1, height = height1)$"BPP after not stopping at interim interval" # assuming interim efficacy boundary: bpp4_1.tmp <- bpp_1interim(prior = "flat", interimSE = sqrt(fac / nevents[1]), finalSE = finalSE, successmean = successmean, IntEffBoundary = log(0), IntFutBoundary = effi, IntFix = effi, priormean = up2$postmean, propA = 0.5, thetas = thetas, width = width1, height = height1) bpp4_1 <- bpp4_1.tmp$"BPP after not stopping at interim exact"[2, 1] post4_1 <- bpp4_1.tmp$"posterior density exact" # assuming interim futility boundary: bpp5_1 <- integrate(Vectorize(estimate_toIntegrate), lower = -Inf, upper = Inf, prior = "flat", successmean = successmean, finalSE = finalSE, interimmean = futi, interimSE = sqrt(fac / nevents[1]), priormean = up2$postmean, width = width1, height = height1)$value bpp5_1.tmp <- bpp_1interim(prior = "flat", interimSE = sqrt(fac / nevents[1]), finalSE = finalSE, successmean = successmean, IntEffBoundary = log(0), IntFutBoundary = effi, IntFix = futi, priormean = up2$postmean, propA = 0.5, thetas = thetas, width = width1, height = height1) bpp5_1 <- bpp5_1.tmp$"BPP after not stopping at interim exact"[2, 1] post5_1 <- bpp5_1.tmp$"posterior density exact" # ------------------------------------------ # plots for flat prior # ------------------------------------------ # first two updates with external studies # compute posteriors flatpost1 <- rep(NA, length(thetas)) flatpost2 <- flatpost1 for (i in 1:length(thetas)){ flatpost1[i] <- estimate_posterior(x = thetas[i], prior = "flat", interimmean = log(hr1), interimSE = sd1, priormean = priormean, width = width1, height = height1) flatpost2[i] <- estimate_posterior(x = thetas[i], prior = "flat", interimmean = log(hr2), interimSE = sd2, priormean = priormean, width = width1, height = height1) } par(las = 1, mar = c(9, 5, 2, 1), mfrow = c(1, 2)) plot(0, 0, type = "n", xlim = c(-0.6, 0.3), ylim = c(-0.10, 5), xlab = "", ylab = "density", main = "") title(expression("Flat prior density and corresponding posteriors for "*theta), line = 0.7) basicPlot(leg = FALSE, IntEffBoundary = effi, IntFutBoundary = futi, successmean = successmean, priormean = priormean) lines(thetas, dUniformNormalTails(thetas, mu = priormean, width = width1, height = height1), lwd = 2, col = 2) lines(thetas, flatpost1, col = 3, lwd = 2) lines(thetas, flatpost2, col = 4, lwd = 2) lines(thetas, post3_1, col = 1, lwd = 2) legend(-0.64, 5.2, c("prior", "posterior after Sub1", "posterior after Sub1 & Sub2", "posterior after Sub1 & Sub2 and not stopping at interim"), lty = 1, col = c(2:4, 1), bty = "n", lwd = 2) # posterior densities for interval knowledge and thetahat equal to boundaries: plot(0, 0, type = "n", xlim = c(-0.6, 0.3), ylim = c(-0.10, 8), xlab = "", ylab = "density", main = "") title(expression("Posteriors for "*theta*" after not stopping at interim, for Flat prior"), line = 0.7) basicPlot(leg = FALSE, IntEffBoundary = effi, IntFutBoundary = futi, successmean = successmean, priormean = priormean) lines(thetas, post3_1, col = 1, lwd = 2) lines(thetas, post4_1, col = 2, lwd = 2) lines(thetas, post5_1, col = 3, lwd = 2) leg.flat <- c("interval knowledge", expression(hat(theta)*" = efficacy boundary"), expression(hat(theta)*" = futility boundary") ) legend(-0.62, 8.2, leg.flat, lty = 1, col = 1:3, lwd = 2, bty = "n", title = "posterior after not stopping at interim,") # ------------------------------------------ # reproduce Table 1 in Rufibach et al (2016a) # ------------------------------------------ mat <- matrix(NA, ncol = 2, nrow = 10) mat[, 1] <- c(pnorm1, pnorm2, bpp0, bpp1, bpp2, bpp3, bpp3_futi_only, bpp3_effi_only, bpp4, bpp5) mat[, 2] <- c(flat1, flat2, bpp0_1, bpp1_1, bpp2_1, bpp3_1, bpp3_1_futi_only, bpp3_1_effi_only, bpp4_1, bpp5_1) colnames(mat) <- c("Normal prior", "Flat prior") rownames(mat) <- c(paste("Probability for hazard ratio to be $le$ ", lims[1], sep = ""), paste("Probability for hazard ratio to be $ge$ ", lims[2], sep = ""), "PoS based on prior distribution", "PoS after Sub1", "PoS after Sub1 and Sub2", "PoS after not stopping at interim, assuming $inte{hat theta} in [effi{theta}, futi{theta}]$", "PoS after not stopping at interim, assuming $inte{hat theta} in [-infty, futi{theta}]$", "PoS after not stopping at interim, assuming $inte{hat theta} in [effi{theta}, infty]$", "PoS after not stopping at interim, assuming $inte{hat theta} = effi{theta}$", "PoS after not stopping at interim, assuming $inte{hat theta} = futi{theta}$") as.data.frame(format(mat, digits = 2)) ** Processing: /home/hornik/tmp/R.check/r-devel-gcc/Work/PKGS/bpp.Rcheck/vign_test/bpp/vignettes/bpp_files/figure-html/unnamed-chunk-3-1.png 672x528 pixels, 3x8 bits/pixel, RGB Input IDAT size = 33632 bytes Input file size = 33758 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 26891 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 26891 Output IDAT size = 26891 bytes (6741 bytes decrease) Output file size = 26969 bytes (6789 bytes = 20.11% decrease) ** Processing: /home/hornik/tmp/R.check/r-devel-gcc/Work/PKGS/bpp.Rcheck/vign_test/bpp/vignettes/bpp_files/figure-html/unnamed-chunk-10-1.png 672x480 pixels, 3x8 bits/pixel, RGB Input IDAT size = 61979 bytes Input file size = 62141 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 55929 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 55929 Output IDAT size = 55929 bytes (6050 bytes decrease) Output file size = 56007 bytes (6134 bytes = 9.87% decrease) ** Processing: /home/hornik/tmp/R.check/r-devel-gcc/Work/PKGS/bpp.Rcheck/vign_test/bpp/vignettes/bpp_files/figure-html/unnamed-chunk-11-1.png 672x528 pixels, 3x8 bits/pixel, RGB Input IDAT size = 58742 bytes Input file size = 58904 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 56558 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 IDAT size = 55511 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 5 IDAT size = 55511 Output IDAT size = 55511 bytes (3231 bytes decrease) Output file size = 55589 bytes (3315 bytes = 5.63% decrease) Quitting from bpp.Rmd:417-448 [unnamed-chunk-13] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `integrate()`: ! roundoff error was detected --- Backtrace: ▆ 1. └─bpp::bpp_2interim(...) 2. └─stats::integrate(...) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'bpp.Rmd' failed with diagnostics: roundoff error was detected --- failed re-building ‘bpp.Rmd’ SUMMARY: processing the following file failed: ‘bpp.Rmd’ Error: Vignette re-building failed. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc