FLASHMM: Fast and Scalable Single Cell Differential Expression Analysis using Mixed-Effects Models

A fast and scalable linear mixed-effects model (LMM) estimation algorithm for analysis of single-cell differential expression. The algorithm uses summary-level statistics and requires less computer memory to fit the LMM.

Version: 1.0.0
Imports: stats, MASS, Matrix
Suggests: knitr, bookdown, rmarkdown, devtools, SingleCellExperiment, ExperimentHub
Published: 2025-01-14
DOI: 10.32614/CRAN.package.FLASHMM
Author: Changjiang Xu [aut, cre], Gary Bader [aut]
Maintainer: Changjiang Xu <changjiang.xu at utoronto.ca>
BugReports: https://github.com/BaderLab/FLASHMM/issues
License: MIT + file LICENSE
URL: https://github.com/BaderLab/FLASHMM
NeedsCompilation: no
Materials: README NEWS
CRAN checks: FLASHMM results

Documentation:

Reference manual: FLASHMM.pdf
Vignettes: Single-cell differential expression analysis with FLASHMM (source, R code)

Downloads:

Package source: FLASHMM_1.0.0.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): FLASHMM_1.0.0.tgz, r-oldrel (arm64): not available, r-release (x86_64): FLASHMM_1.0.0.tgz, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=FLASHMM to link to this page.