Wetterslev J, Jakobsen JC, Gluud C. Trial Sequential Analysis in systematic reviews with meta-analysis. BMC Med Res Methodol. 2017;17. doi:10.1186/S12874-017-0315-7.
Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane, 2022. Available from www.training.cochrane.org/handbook.
Brok J, Thorlund K, Wetterslev J, Gluud C. Apparently conclusive meta-analyses may be inconclusive–Trial sequential analysis adjustment of random error risk due to repetitive testing of accumulating data in apparently conclusive neonatal meta-analyses. Int J Epidemiol. 2009;38:287–98. doi:10.1093/ije/dyn188.
Jakobsen JC, Wetterslev J, Winkel P, Lange T, Gluud C. Thresholds for statistical and clinical significance in systematic reviews with meta-analytic methods. BMC Med Res Methodol. 2014;14.
Bender R, Bunce C, Clarke M, Gates S, Lange S, Pace NL, et al. Attention should be given to multiplicity issues in systematic reviews. J Clin Epidemiol. 2008;61:857–65. doi:10.1016/j.jclinepi.2008.03.004.
Turner RM, Bird SM, Higgins JPTT. The impact of study size on meta-analyses: Examination of underpowered studies in Cochrane reviews. PLoS One. 2013;8:e59202. doi:10.1371/journal.pone.0059202.
Guyatt GH, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, Rind D, et al. GRADE guidelines 6. Rating the quality of evidence–imprecision. J Clin Epidemiol. 2011;64:1283–93. doi:10.1016/j.jclinepi.2011.01.012.
Zhang Y, Coello PA, Guyatt GH, Yepes-Nuñez JJ, Akl EA, Hazlewood G, et al. GRADE guidelines: 20. Assessing the certainty of evidence in the importance of outcomes or values and preferences-inconsistency, imprecision, and other domains. J Clin Epidemiol. 2019;111:83–93. doi:10.1016/J.JCLINEPI.2018.05.011.
Zeng L, Brignardello-Petersen R, Hultcrantz M, Mustafa RA, Murad MH, Iorio A, et al. GRADE Guidance 34: update on rating imprecision using a minimally contextualized approach. J Clin Epidemiol. 2022;0. doi:10.1016/j.jclinepi.2022.07.014.
Wetterslev J, Thorlund K, Brok J, Gluud C. Estimating required information size by quantifying diversity in random-effects model meta-analyses. BMC Med Res Methodol. 2009;9:86. doi:10.1186/1471-2288-9-86.
Wetterslev J, Thorlund K, Brok J, Gluud C. Trial sequential analysis may establish when firm evidence is reached in cumulative meta-analysis. J Clin Epidemiol. 2008;61:64–75.
Nordic Cochrane Centre. Review Manager 5 (RevMan 5). https://training.cochrane.org/online-learning/core-software/revman.
Imberger G, Thorlund K, Gluud C, Wetterslev J. False-positive findings in Cochrane meta-analyses with and without application of trial sequential analysis: an empirical review. BMJ Open. 2016;6:e011890. doi:10.1136/BMJOPEN-2016-011890.
Norman GR, Sloan JA, Wyrwich KW. Interpretation of changes in health-related quality of life: the remarkable universality of half a standard deviation. Med Care. 2003;41:582–92. doi:10.1097/01.MLR.0000062554.74615.4C.
Tsujimoto Y, Fujii T, Tsutsumi Y, Kataoka Y, Tajika A, Okada Y, et al. Minimal important changes in standard deviation units are highly variable and no universally applicable value can be determined. J Clin Epidemiol. 2022;145:92–100. doi:10.1016/J.JCLINEPI.2022.01.017.
Kulinskaya E, Wood J. Trial sequential methods for meta-analysis. Res Synth Methods. 2014 Sep;5(3):212-20. doi: 10.1002/jrsm.1104. Epub 2013 Nov 28. PMID: 26052847.