SparseICA: Sparse Independent Component Analysis
Provides an implementation of the Sparse ICA method in Wang et al. (2024) <doi:10.1080/01621459.2024.2370593> for estimating sparse independent source components of cortical surface functional MRI data, by addressing a non-smooth, non-convex optimization problem through the relax-and-split framework. This method effectively balances statistical independence and sparsity while maintaining computational efficiency.
Version: |
0.1.4 |
Depends: |
R (≥ 4.1.0) |
Imports: |
Rcpp (≥ 1.0.13), MASS (≥ 7.3-58), irlba (≥ 2.3.5), clue (≥
0.3), ciftiTools (≥ 0.16), parallel (≥ 4.1) |
LinkingTo: |
Rcpp, RcppArmadillo |
Published: |
2025-01-29 |
DOI: |
10.32614/CRAN.package.SparseICA |
Author: |
Zihang Wang [aut,
cre],
Irina Gaynanova
[aut],
Aleksandr Aravkin
[aut],
Benjamin Risk
[aut] |
Maintainer: |
Zihang Wang <zhwang0378 at gmail.com> |
BugReports: |
https://github.com/thebrisklab/SparseICA/issues |
License: |
GPL-3 |
URL: |
https://github.com/thebrisklab/SparseICA |
NeedsCompilation: |
yes |
Citation: |
SparseICA citation info |
CRAN checks: |
SparseICA results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=SparseICA
to link to this page.