Package 'SteppedPower'

April 29, 2024

Type PackageTitle Power Calculation for Stepped Wedge Designs
Version 0.3.5
Description Tools for power and sample size
calculation as well as design diagnostics for
longitudinal mixed model settings, with a focus on stepped wedge designs.
All calculations are oracle estimates i.e. assume random effect variances
to be known (or guessed) in advance.
The method is introduced in Hussey and Hughes (2007) doi:10.1016/j.cct.2006.05.007,extensions are discussed in Li et al. (2020) doi:10.1177/0962280220932962.
Imports Matrix, plotly, Rfast, grDevices, stats, utils
Suggests knitr, rmarkdown, swCRTdesign, testthat, pwr
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.1
VignetteBuilder knitr
NeedsCompilation no
Author Philipp Mildenberger [aut, cre]
(https://orcid.org/0000-0002-7367-1708),
Federico Marini [ctb] (https://orcid.org/0000-0003-3252-7758)
Maintainer Philipp Mildenberger pmildenb@uni-mainz.de
Repository CRAN
Date/Publication 2024-04-29 20:40:03 UTC
R topics documented:
alpha012_to_RandEff 2
compute_glsPower 3
compute_InfoContent 4
construct_CovBlk 5
construct_CovMat 6
construct_CovSubMat 7
construct_DesMat 9
construct_incompMat 10
construct_timeAdjust 11
construct_trtMat 12
glsPower 12
plot.DesMat 17
plot.glsPower 18
plot_CellWeights 19
plot_CovMat 19
plot_InfoContent 20
print.DesMat 21
print.glsPower 21
RandEff_to_alpha012 22
SteppedPower-pkg 22
tTestPwr 23
VarClosed_Kasza 23
VarClosed_Li 24
Index 26
alpha012_to_RandEff Correlation structure: transform alpha to random effects

Description

Correlation structure: transform alpha to random effects

Usage

alpha012_to_RandEff(alpha012, sigResid = NULL, sigMarg = NULL)

Arguments

alpha012	A vector or a list of length 3. Each list element must have the same dimension.
sigResid	Residual standard deviation on individual level. Either residual sd or marginal sd needs to be specified.
sigMarg	Marginal standard deviation on individual level. Either residual sd or marginal sd needs to be specified.

Value

a list containing four named elements (possibly matrices): random cluster intercept 'tau', random time effect 'gamma', random subject intercept and residual standard deviation

Examples

```
alpha012_to_RandEff(alpha012=c(.1,.1,.1), sigMarg=1)
alpha012_to_RandEff(alpha012=c(.1,.1,.1), sigResid=.9486833)
## The function is vectorised:
alpha012_to_RandEff(alpha012=list(matrix(c(0,.1,.1,.2), 2, 2),
    matrix(c(0,0,.1,.2) , 2, 2),
    matrix(c(0,0,.2,.2) , 2, 2)),
    sigMarg=1)
```

compute_glsPower Compute power via weighted least squares

Description

This function is not intended to be used directly, but rather to be called by 'glsPower' - the main function of this package. It expects the design matrix as an input argument 'DesMat' and construct the covariance matrix (if not given as well). These matrices are used to calculate the variance of the treatment effect estimator which is then used to calculate the power to detect the assumed treatment effect.

Usage

compute_glsPower (DesMat, EffSize,
sigma,
tau $=0$,
eta $=$ NULL,
AR = NULL,
rho = NULL,
gamma $=$ NULL,
psi $=$ NULL,
CovMat = NULL,
dfAdjust = "none",
sig.level = 0.05,
INDIV_LVL = FALSE,
INFO_CONTENT = FALSE,
verbose $=1$
)

Arguments

DesMat object of class 'DesMat'.
EffSize raw effect, i.e. difference between mean under control and mean under intervention

sigma	numeric, residual error of cluster means if no N given.
tau	numeric, standard deviation of random intercepts
eta	numeric (scalar or matrix), standard deviation of random slopes. If 'eta' is given as scalar, 'trtMat' is needed as well.
AR	numeric, vector containing up to three values, each between 0 and 1 . Defaults to NULL. It defines the AR(1)-correlation of random effects. The first element corresponds to the cluster intercept, the second to the treatment effect and the third to subject specific intercept. If only one element is provided, autocorrelation of all random effects is assumed to be the same. *Currently not compatible with 'rho'!=0 !*
rho	numeric (scalar), correlation of 'tau' and 'eta'. The default is no correlation.
gamma	numeric (scalar), random time effect
psi	numeric (scalar), random subject specific intercept. Leads to a closed cohort setting
CovMat	numeric, a positive-semidefinite matrix with (\#Clusters • timepoints) rows and columns. If 'CovMat' is given, 'sigma', 'tau', 'eta', 'rho', 'gamma' and 'psi' as well as 'alpha_0_1_2' must be NULL.
dfAdjust	character, one of the following: "none","between-within", "containment", "residual".
sig.level	numeric (scalar), significance level, defaults to 0.05
INDIV_LVL	logical, should the computation be conducted on an individual level? This leads to longer run time and is mainly for diagnostic purposes.
INFO_CONTENT	logical, should the information content of cluster cells be computed? The default is 'TRUE' for designs with less or equal than 2500 cluster cells, otherwise 'FALSE'. Ignored if 'verbose $=0$ '.
verbose	integer, how much information should the function return? See also under 'Value'.

Value

The return depends on the 'verbose' parameter. If 'verbose ${ }^{\prime}=0$, only the power is returned If 'verbose ${ }^{\text {}}=1$ (the default), a list containing power and the parameters of the specific setting is returned. If requested (by 'verbose' $=2$) this list also contains relevant matrices.
compute_InfoContent Title Formula-based calculation of information content

Description

Title Formula-based calculation of information content

Usage

compute_InfoContent(CovMat $=$ NULL, $W=$ NULL, dsn, sumCl, tp)

Arguments

CovMat \#' @ param CovMat numeric, a positive-semidefinite matrix with (\#Clusters . timepoints) rows and columns.

W
numeric, the inverse of a covariance matrix. If CovMat is specified, input for W is ignored
dsn a matrix with (\#Clusters • \#timepoints) rows and p columns, where p are the degrees of freedom of fixed effects in a gls model. This usually contains the intervention effect and some specification of the time effect.
sumCl number of clusters
tp number of time points

Value

A matrix containing the information content for every cluster-period cell

```
construct_CovBlk Construct a Single Block of the Covariance Matrix
```


Description

Constructs the covariance matrix for multiple measurements of the same cluster. This function is usually called by 'construct_CovMat' and is not designed to be used directly.

Usage

construct_CovBlk(sigma, tau $=$ NULL, eta $=$ NULL, $A R=$ NULL, rho $=$ NULL)

Arguments

sigma	numeric (vector of length 'timepoints'), residual error
tau	numeric (vector of length 'timepoints'), standard deviation of random intercepts
eta	numeric (vector of length 'timepoints'), standard deviation of random slope
AR	numeric, vector containing up to three values, each between 0 and 1. Defaults to NULL. It defines the AR(1)-correlation of random effects. The first element corresponds to the cluster intercept, the second to the treatment effect and the third to subject specific intercept. If only one element is provided, autocorrela- tion of all random effects is assumed to be the same. *Currently not compatible with 'rho'! $=0$!*
rho numeric (scalar), correlation of 'tau' and 'eta'. The default is no correlation.	

Value

a block of a covariance matrix, corresponding to intra-cluster covariance over time for one cluster

Examples

```
    construct_CovBlk(sigma=rep(2,5), tau=rep(1,5))
    construct_CovBlk(sigma=rep(2,5),
        tau=rep(.5,5), eta=c(0,0,1,1,1),
        AR=c(.5, 1))
```

 construct_CovMat Construct a Covariance Matrix

Description

constructs a (block diagonal) covariance matrix. This function calls 'construct_CovBlk' (or 'construct_CovSubMat‘ in case of repeated observations of the same individuals) for each block.

```
Usage
    construct_CovMat(
        sumCl = NULL,
        timepoints = NULL,
        sigma,
        tau,
        eta = NULL,
        AR = NULL,
        rho = NULL,
        gamma = NULL,
        trtMat = NULL,
        N = NULL,
        CovBlk = NULL,
        psi = NULL,
        INDIV_LVL = FALSE
    )
```

Arguments
sumCl
timepoints numeric (scalar or vector), number of timepoints (periods). If design is swd, timepoints defaults to length $(\mathrm{Cl})+1$. Defaults to 1 for parallel designs.
sigma numeric, residual error of cluster means if no N given.
tau numeric, standard deviation of random intercepts
eta numeric (scalar or matrix), standard deviation of random slopes. If 'eta' is given as scalar, 'trtMat' is needed as well.
AR numeric, vector containing up to three values, each between 0 and 1. Defaults to NULL. It defines the AR(1)-correlation of random effects. The first element corresponds to the cluster intercept, the second to the treatment effect and the
third to subject specific intercept. If only one element is provided, autocorrelation of all random effects is assumed to be the same. *Currently not compatible with 'rho'!=0 !*
rho numeric (scalar), correlation of 'tau' and 'eta'. The default is no correlation.
gamma numeric (scalar), random time effect
trtMat a matrix of dimension *\#Cluster* x *timepoints* as produced by the function 'construct_trtMat', indicating the cluster-periods that receive interventional treatment. Defaults to NULL. If trtMat is given, the arguments 'sumCl' and 'timepoints‘ are ignored (!).
$\mathrm{N} \quad$ numeric, number of individuals per cluster. Either a scalar, vector of length \#Clusters or a matrix of dimension \#Clusters x timepoints. Defaults to 1 if not passed.
CovBlk a matrix of dimension *timepoints* x *timepoints*.
psi numeric (scalar), random subject specific intercept. Leads to a closed cohort setting
INDIV_LVL logical, should the computation be conducted on an individual level? This leads to longer run time and is mainly for diagnostic purposes.

Value

a covariance matrix

Examples

```
## Two clusters, three timepoints,
## residual standard error sd=3, random slope sd=1.
construct_CovMat(sumCl=2, timepoints=3, sigma=3, tau=1)
##
##
## ... with random slope as AR-1 process
construct_CovMat(sumCl=2, timepoints=3, sigma=3, tau=1, AR=.8)
##
##
## ... with sigma and tau variing over time and between clusters:
construct_CovMat(sumCl=2,timepoints=3,
    sigma=matrix(c(1, 2, 2, 1, 1, 2),nrow=2, byrow=TRUE),
    tau=matrix(c(.2,.1,.1,.2,.2,.1),nrow=2, byrow=TRUE),
    N=c(3,4))
```


Description

Constructs the covariance matrix for multiple measurements of the same cluster if the same individuals are observed at all time periods. This function is not designed to be used directly.

Usage

```
    construct_CovSubMat(
        N,
        timepoints,
        sigma,
        tau,
        eta = NULL,
        AR = NULL,
        rho = NULL,
        gamma = NULL,
        psi = NULL,
        INDIV_LVL = FALSE
    )
```


Arguments

N
timepoints
sigma numeric (vector of length 'timepoints'), residual error
tau numeric (vector of length 'timepoints'), standard deviation of random intercepts
eta numeric (vector of length 'timepoints'), standard deviation of random slope
AR numeric, vector containing up to three values, each between 0 and 1 . Defaults to NULL. It defines the AR(1)-correlation of random effects. The first element corresponds to the cluster intercept, the second to the treatment effect and the third to subject specific intercept. If only one element is provided, autocorrelation of all random effects is assumed to be the same. *Currently not compatible with 'rho' $!=0$!*
rho numeric (scalar), correlation of 'tau' and 'eta'. The default is no correlation.
gamma numeric (vector of length 'timepoints'), standard deviation of a random time effect.
psi numeric (scalar), random subject specific intercept. Leads to a closed cohort setting
INDIV_LVL logical, should the computation be conducted on an individual level? This leads to longer run time and is mainly for diagnostic purposes.

Value

a block of a covariance matrix with two levels of clustering, corresponding to intra-cluster covariance over time for one cluster
construct_DesMat Construct the Design Matrix

Description

Constructs the design matrix with one column for every (fixed) parameter to be estimated and one row for every cluster for every timepoint. This function calls 'construct_trtMat' to construct a matrix that indicates treatment status for each cluster at each timepoint. This is then transformed into the first column of the design matrix. 'construct_CovMat' further calls 'construct_timeAdjust' to get the fixed effect(s) of the timepoints.

Note: Unlike the usual notation, the treatment effect is in the first column (for easier access by higher level functions).

Usage

construct_DesMat(
Cl $=$ NULL,
trtDelay = NULL,
dsntype = "SWD",
timepoints = NULL,
timeAdjust = "factor",
period = NULL,
trtmatrix = NULL,
timeBlk = NULL,
$\mathrm{N}=\mathrm{NULL}$,
incomplete = NULL,
INDIV_LVL = FALSE
)

Arguments

Cl
trtDelay
dsntype
timepoints
timeAdjust character, specifies adjustment for time periods. One of the following: "factor", "linear", "none", "periodic". Defaults to "factor".
period numeric (scalar)
trtmatrix an optional user defined matrix to define treatment allocation

$$
\begin{array}{ll}
\text { timeBlk } & \begin{array}{l}
\text { an optional user defined matrix that defines the time adjustment in one cluster. } \\
\text { Is repeated for every cluster. }
\end{array} \\
\text { N } & \begin{array}{l}
\text { numeric, number of individuals per cluster. Either a scalar, vector of length } \\
\text { \#Clusters or a matrix of dimension \#Clusters x timepoints. Defaults to } 1 \text { if not } \\
\text { passed. }
\end{array} \\
\text { incomplete } & \begin{array}{l}
\text { integer, either a scalar (only for SWD) or a matrix. A vector defines the number } \\
\text { of periods before and after the switch from control to intervention that are ob- } \\
\text { served. A matrix consists of '1's for observed clusterperiods and '0's or 'NA' } \\
\text { for unobserved clusterperiods. }
\end{array} \\
\text { INDIV_LVL } & \begin{array}{l}
\text { logical, should the computation be conducted on an individual level? This leads } \\
\text { to longer run time and is mainly for diagnostic purposes. }
\end{array}
\end{array}
$$

Value

an object of class DesMat

Examples

```
construct_DesMat(Cl=c(2,0,1))
construct_DesMat (Cl=c(2,0,1), N=c(1,3,2))
## manually defined time adjustment (same as above)
timeBlock <- matrix(c(1,0,0,0,
    1,1,0,0,
    1,0,1,0,
    1,0,0,1), 4, byrow=TRUE)
construct_DesMat(Cl=c(2,0,1), timeBlk=timeBlock)
```

construct_incompMat $\begin{aligned} & \text { Constructs a matrix of 'NA' and 'I'for unobserved and observed clus- } \\ & \text { ter periods, respectively. }\end{aligned}$

Description

Mostly useful to build incomplete stepped wedge designs

Usage

construct_incompMat(incomplete, dsntype, timepoints, Cl , trtmatrix = NULL)

Arguments

incomplete integer, either a scalar (only for SWD) or a matrix. A vector defines the number of periods before and after the switch from control to intervention that are observed. A matrix consists of ' 1 ' s for observed clusterperiods and ' 0 's or 'NA' for unobserved clusterperiods.

dsntype	character, defines the type of design. Options are "SWD", "parallel" and "paral- lel_baseline", defaults to "SWD".
timepoints	numeric (scalar or vector), number of timepoints (periods). If design is swd, timepoints defaults to length $(\mathrm{Cl})+1$. Defaults to 1 for parallel designs.
Cl	integer (vector), number of clusters per sequence group (in SWD), or number in control and intervention (in parallel designs)
trtmatrix	an optional user defined matrix to define treatment allocation

Value

a matrix

```
construct_timeAdjust Construct the time period adjustment in the design matrix
```


Description

Offers several options to adjust for secular trends.

Usage

construct_timeAdjust(
Cl ,
timepoints,
timeAdjust = "factor", period = NULL,
timeBlk = NULL
)

Arguments

Cl
integer (vector), number of clusters per sequence group (in SWD), or number in control and intervention (in parallel designs)
timepoints numeric (scalar or vector), number of timepoints (periods). If design is swd, timepoints defaults to length $(\mathrm{Cl})+1$. Defaults to 1 for parallel designs.
timeAdjust character, specifies adjustment for time periods. One of the following: "factor", "linear", "none", "periodic". Defaults to "factor".
period numeric (scalar)
timeBlk an optional user defined matrix that defines the time adjustment in one cluster. Is repeated for every cluster.

Value

a matrix with one row for every cluster at every timepoint and number of columns depending of adjustment type.
construct_trtMat Construct Treatment Matrix

Description

Constructs a matrix of '\#cluster' rows and '\#timepoint' columns, indicating treatment status in each cluster at each timepoint.

Usage

construct_trtMat(Cl, trtDelay, dsntype, timepoints = NULL)

Arguments

Cl	integer (vector), number of clusters per sequence group (in SWD), or number in control and intervention (in parallel designs)
trtDelay	numeric (possibly vector), 'NA'(s) and/or value(s) between '0' and ' 1 '. 'NA' means that first (second, ...) period after intervention start is not observed. A value between '0' and '1' specifies the assumed proportion of intervention effect in the first (second ...) intervention period.
dsntype	character, defines the type of design. Options are "SWD", "parallel" and "paral- lel_baseline", defaults to "SWD".
timepoints	numeric (scalar or vector), number of timepoints (periods). If design is swd, timepoints defaults to length $(\mathrm{Cl})+1$. Defaults to 1 for parallel designs.

Value

a matrix trtMat, where rows and columns correspond to cluster and timepoints, respectively

Examples

```
construct_trtMat(Cl=c(1,2,1), trtDelay=c(.2,.8), dsntype="SWD")
```

glsPower Compute power via weighted least squares

Description

This is the main function of the SteppedPower package. It calls the constructor functions for the design matrix and covariance matrix, and then calculates the variance of the intervention effect estimator. The latter is then used to compute the power of a Wald test of a (given) intervention effect.

Usage

```
glsPower(
        Cl = NULL,
        timepoints = NULL,
        DesMat = NULL,
        trtDelay = NULL,
        incomplete = NULL,
        timeAdjust = "factor",
        period = NULL,
        dsntype = "SWD",
        mu0,
        mu1,
        marginal_mu = FALSE,
        sigma = NULL,
        tau = NULL,
        eta = NULL,
        AR = NULL,
        rho = NULL,
        gamma = NULL,
        psi = NULL,
        alpha_0_1_2 = NULL,
        CovMat = NULL,
        N = NULL,
        power = NULL,
        family = "gaussian",
        N_range = c(1, 1000),
        sig.level = 0.05,
        dfAdjust = "none",
        INDIV_LVL = FALSE,
        INFO_CONTENT = NULL,
        verbose = 1
)
```


Arguments

$\mathrm{Cl} \quad$ integer (vector), number of clusters per sequence group (in SWD), or number in control and intervention (in parallel designs)
timepoints numeric (scalar or vector), number of timepoints (periods). If design is swd, timepoints defaults to length $(\mathrm{Cl})+1$. Defaults to 1 for parallel designs.

DesMat Either an object of class 'DesMat' or a matrix indicating the treatment status for each cluster at each timepoint. If supplied, 'timepoints',' Cl^{\prime}, 'trtDelay' are ignored.
trtDelay numeric (possibly vector), 'NA'(s) and/or value(s) between ' 0 ' and ' 1 '. 'NA' means that first (second, ...) period after intervention start is not observed. A value between ' 0 ' and ' 1 ' specifies the assumed proportion of intervention effect in the first (second ...) intervention period.

incomplete	integer, either a scalar (only for SWD) or a matrix. A vector defines the number of periods before and after the switch from control to intervention that are observed. A matrix consists of ' 1 's for observed clusterperiods and ' 0 's or 'NA' for unobserved clusterperiods.
timeAdjust	character, specifies adjustment for time periods. One of the following: "factor", "linear", "none", "periodic". Defaults to "factor".
period	numeric (scalar)
dsntype	character, defines the type of design. Options are "SWD", "parallel" and "parallel_baseline", defaults to "SWD".
mu0	numeric (scalar), mean under control
mu1	numeric (scalar), mean under treatment
marginal_mu	logical. Only relevant for non-gaussian outcome. Indicates whether mu0 and mu1 are to be interpreted as marginal prevalence under control and under treatment, respectively, or whether they denote the prevalence conditional on random effects being 0 (It defaults to the latter). *(experimental!)*
sigma	numeric, residual error of cluster means if no N given.
tau	numeric, standard deviation of random intercepts
eta	numeric (scalar or matrix), standard deviation of random slopes. If 'eta' is given as scalar, 'trtMat' is needed as well.
AR	numeric, vector containing up to three values, each between 0 and 1 . Defaults to NULL. It defines the AR(1)-correlation of random effects. The first element corresponds to the cluster intercept, the second to the treatment effect and the third to subject specific intercept. If only one element is provided, autocorrelation of all random effects is assumed to be the same. *Currently not compatible with 'rho' ! =0 !*
rho	numeric (scalar), correlation of 'tau' and 'eta'. The default is no correlation.
gamma	numeric (scalar), random time effect
psi	numeric (scalar), random subject specific intercept. Leads to a closed cohort setting
alpha_0_1_2	numeric vector or list of length 2 or 3 , that consists of alpha_0, alpha_1 and alpha_2. Can be used instead of random effects to define the correlation structure, following Li et al. (2018). When omitting alpha_2, this describes a crosssectional design, where alpha_0 and alpha_1 define the intracluster correlation and cluster autocorrelation, respectively - as defined by Hooper et al. (2016).
CovMat	numeric, a positive-semidefinite matrix with (\#Clusters • timepoints) rows and columns. If 'CovMat' is given, 'sigma', 'tau', 'eta', 'rho', 'gamma' and 'psi' as well as 'alpha_0_1_2' must be NULL.
N	numeric, number of individuals per cluster. Either a scalar, vector of length \#Clusters or a matrix of dimension \#Clusters x timepoints. Defaults to 1 if not passed.
power	numeric, a specified target power. If supplied, the minimal ' N ' is returned.
family	character, distribution family. One of "gaussian", "binomial". Defaults to "gaussian"

N_range	numeric, vector specifying the lower and upper bound for ' N ', ignored if 'power' is NULL.
sig.level	numeric (scalar), significance level, defaults to 0.05
dfAdjust	character, one of the following: "none","between-within", "containment", "resid- ual".
INDIV_LVL	logical, should the computation be conducted on an individual level? This leads to longer run time and is mainly for diagnostic purposes.
INFO_CONTENT	logical, should the information content of cluster cells be computed? The de- fault is ‘TRUE' for designs with less or equal than 2500 cluster cells, otherwise
'FALSE'. Ignored if 'verbose=0'.	

Details

Let $\theta:=\mu_{1}-\mu_{0}$ the treatment effect under investigation. The variance of the treatment effect estimator $\hat{\theta}$ can then be estimated via weighted least squares (see also vignette 'Getting Started').

Value

The return depends on the 'verbose' parameter. If 'verbose' $=0$, only the power is returned If 'verbose' $=1$ (the default), a list containing power, projection matrix and the parameters of the specific setting is returned. If explicitly requested (by 'verbose' $=2$) this list also contains the 'DesMat'object and the covariance matrix.

If INFO_CONTENT= TRUE, the returned list contains a named list with four elements: ‘Cells' is explicit computation of the information content in each cell; 'Cluster' is the information content of entire clusters; 'time' is thie information content of entire time periods and 'Closed' is a formulabased computation the information content in each cell,

Examples

```
## See also vignette for more examples
##
##
## stepped wedge design with 5 Clusters in 5 sequences,
## residual standard deviation 2,
## cluster effect sd = 0.33, and 10 individuals per cluster.
## Further, let the mean under the null and alternative hypothesis 0 and 1,
## respectively.
glsPower(mu0=0, mu1=1, Cl=rep(1,5), sigma=2, tau=0.33, N=10)
##
##
## ... with auto-regressive cluster effect `AR=0.7`.
glsPower(mu0=0, mu1=1, Cl=rep(1,5), sigma=2, tau=0.33, AR=0.7, N=10)
##
##
## ... with varying cluster size
glsPower(mu0=0, mu1=1, Cl=rep(1,5), sigma=2, tau=0.33, N=c(12,8,10,9,14))
glsPower(mu0=0, mu1=1, Cl=rep(1,5), sigma=2, tau=0.33,
```

```
    N=matrix(c(12, 8, 10, 9, 14,
            11,8,10, 9,13,
            11,7,11,8,12,
            10,7,10,8,11,
            9,7, 9,7,11,
            9,6, 8,7,11),5,6))
##
##
## ... with random treatment effect (with standard deviation 0.2),
## which is correlated with the cluster effect with `rho`=0.25.
glsPower(mu0=0, mu1=1, Cl=rep(1,5), sigma=2, tau=0.33, eta=.2, rho=.25, N=10)
##
##
## ... with missing observations (a.k.a. incomplete stepped wedge design)
glsPower(mu0=0, mu1=1, Cl=rep(1,5), sigma=2, tau=0.33, N=10, incomplete=3)
glsPower(mu0=0, mu1=1, Cl=rep(1,5), sigma=2, tau=0.33, N=10,
    incomplete=matrix(c(1, 1, 1,0,0,
                                    1,1,1,1,0,
                                    1,1,1,1,1,
                                    1,1,1,1,1,
                                    0,1,1,1,1,
                                    0,0,1,1,1),5,6))
## -> the same.
##
## ... with two levels of clustering. This arises if the patients are
## observed over the whole study period
## (often referred to as closed cohort design) or if subclusters exist
## (such as wards within clinics). For
mod_aggr <- glsPower(mu0=0, mu1=1, Cl=rep(1,5),
                sigma=2, tau=0.33, psi=.25,
                N=10, incomplete=3, verbose=2)
mod_indiv <- glsPower(mu0=0, mu1=1, Cl=rep(1,5),
                sigma=2, tau=0.33, psi=.25,
                N=10, incomplete=3, verbose=2, INDIV_LVL=TRUE)
mod_aggr
mod_indiv
## Compare covariance matrices of first cluster
mod_aggr$CovarianceMatrix[1:6,1:6] ; mod_indiv$CovarianceMatrix[1:60,1:60]
##
##
## stepped wedge design with 5 Clusters in 5 sequences, residual sd = 2,
## cluster effect sd = 0.33. How many Individuals are needed to achieve a
## power of 80% ?
glsPower(mu0=0, mu1=1, Cl=rep(1,5), sigma=2, tau=0.33, power=.8)
##
## ... How many are needed if we have a closed cohort design with a random
## individuum effect of .7?
glsPower(mu0=0, mu1=1, Cl=rep(1,5), sigma=2, tau=0.33, psi=.7, power=.8)
##
##
## longitudinal parallel design, with 5 time periods, 3 clusters in treatment
## and control arm each.
glsPower(mu0=0, mu1=1, Cl=c(3,3), sigma=2, tau=0.33, N=10,
```

```
    dsntype="parallel", timepoints=5)
##
##
##
## ... with one baseline period and four parallel periods
glsPower(mu0=0, mu1=1, Cl=c(3,3), sigma=2, tau=0.33, N=10,
    dsntype="parallel_baseline", timepoints=c(1,4))
##
##
##
## cross-over design with two timepoints before and two after the switch
glsPower(mu0=0, mu1=1, Cl=c(3,3), sigma=2, tau=0.33, N=10,
    dsntype="crossover", timepoints=c(2,2))
##
##
##
## stepped wedge design with 32 Individuals in 8 sequences, binomial outcome,
## 50% incidence under control, 25% incidence under interventional treatment.
## cluster effect sd = 0.5 (ICC of 1/3 under control),
## every individual is its own cluster.
## ... with incidences defined conditional on cluster effect=0
glsPower(mu0=0.5, mu1=0.25, Cl=rep (4,8), tau=0.5, N=1,
    family="binomial")
##
##
## ... with marginally defined proportions
glsPower(mu0=0.5, mu1=0.25, Cl=rep(4,8), tau=0.5, N=1,
    family="binomial", marginal_mu=TRUE)
##
##
```

plot.DesMat plot.DesMat

Description

plot.DesMat

Usage

```
## S3 method for class 'DesMat'
plot(x, show_colorbar = FALSE, INDIV_LVL = FALSE, ...)
```


Arguments

X

An object of class 'DesMat'
show_colorbar logical, should the colorbar be shown?

INDIV_LVL logical, should the computation be conducted on an individual level? This leads to longer run time and is mainly for diagnostic purposes.
... Arguments to be passed to methods

Value

a plotly html widget, displaying the treatment status

Examples

$x<-$ construct_DesMat $(\mathrm{Cl}=\mathrm{c}(2,2,2,0,2,2,2), .5)$

```
plot.glsPower plot an object of class 'glsPower'
```


Description

Up to four plots (selectable by 'which') that visualise: the contribution of each cluster-period cell to the treatment effect estimator, the information content of each cluster-period cell, the treatment status for each cluster for each time point and the covariance matrix. By default, only the first two plots are returned.

Usage

```
    ## S3 method for class 'glsPower'
    plot(
        x,
        which = NULL,
        show_colorbar = NULL,
        annotations = NULL,
        annotation_size = NULL,
        marginal_plots = TRUE,
    )
```


Arguments

X
which
object of class glsPower
Specify a subset of the numbers ' $1: 4$ ' to select plots. The default is ' $1: 2$ ' or ' 1 ', depending on whether ' x ' contains the information content.
show_colorbar logical, should the colorbars be shown?
annotations logical, should the cell contributions be annotated in the Plot?
annotation_size
font size of annotation in influence plots
marginal_plots should the influence of whole periods, clusters also be plotted?
... Arguments to be passed to methods

Value

a list of plotly html widgets
plot_CellWeights plot cell contributions (weights) of a gls object

Description

plot cell contributions (weights) of a gls object

Usage

plot_CellWeights(
x ,
annotations = NULL,
annotation_size = NULL,
show_colorbar = TRUE,
marginal_plots = TRUE
)

Arguments

x object of class glsPower
annotations logical, should the cell contributions be annotated in the Plot?
annotation_size font size of annotation in influence plots
show_colorbar logical, should the colorbars be shown?
marginal_plots should the influence of whole periods, clusters also be plotted?

Value

a plotly html widget
plot_CovMat Visualise a Covariance Matrix

Description

Currently not exported.

Usage

plot_CovMat(CovMat, show_colorbar = FALSE)

Arguments

CovMat A covariance matrix (possibly in sparse matrix notation)
show_colorbar logical, should the colorbar be shown?

Value

a plotly object

```
plot_InfoContent plot the information content of a gls object
```


Description

plot the information content of a gls object

Usage

```
plot_InfoContent(
        IC,
        annotations = NULL,
        annotation_size = NULL,
        show_colorbar = TRUE,
        marginal_plots = TRUE
)
```


Arguments

IC
a matrix with information content for each cluster at each time period
annotations
logical, should the cell contributions be annotated in the Plot?
annotation_size
font size of annotation in influence plots
show_colorbar logical, should the colorbars be shown?
marginal_plots should the influence of whole periods, clusters also be plotted?

Value

a plotly object

```
print.DesMat print.DesMat
```


Description

print.DesMat

Usage

\#\# S3 method for class 'DesMat'
print(x, ...)

Arguments

x
An object of class 'DesMat
... Arguments to be passed to methods

Value

Messages with information about the design.
print.glsPower Print an object of class 'glsPower'

Description

Print an object of class 'glsPower'

Usage

\#\# S3 method for class 'glsPower'
print(x, ...)

Arguments

$x \quad$ object of class glsPower
... Arguments to be passed to methods

Value

Messages, containing information about (at least) power and significance level

RandEff_to_alpha012 Correlation structure: transform random effects to alpha

Description

Correlation structure: transform random effects to alpha

Usage

RandEff_to_alpha012(sigResid, tau, gamma, psi)

Arguments

sigResid	Residual standard deviation on individual level
tau	standard deviation of random cluster intercept
gamma	standard deviation of random time effect
psi	standard deviation of random subject specific intercept

Value

a list containing four named elements (possibly matrices): 'alpha0', 'alpha1', 'alpha2' specify a correlation structure and SigMarg denotes the marginal standard deviation

Examples

```
RandEff_to_alpha012(sigResid=sqrt(11), tau=4, gamma=3, psi=2)
## The function is vectorised:
RandEff_to_alpha012(sigResid = matrix(c(0,1,2,3,4,5), 2, 3),
    tau = matrix(c(1,1,1,0,0,0), 2, 3),
    gamma = matrix(c(0,0,1,0,0,1), 2, 3),
    psi = matrix(c(0,1,1,0,0,1), 2, 3))
```

 SteppedPower-pkg SteppedPower

Description

SteppedPower offers tools for power and sample size calculation as well as design diagnostics for longitudinal mixed model settings, with a focus on stepped wedge designs. All calculations are oracle estimates i.e. assume random effect variances to be known (or guessed) in advance.

Author(s)

Philipp Mildenberger pmildenb@uni-mainz.de

```
tTestPwr Compute Power of a Wald Test
```


Description

Computes the power of a scaled Wald test given a standard error, an effect size, the degrees of freedom of the t-distribution and a significance level. Computes the exact power, see second example

Usage

tTestPwr(d, se, df, sig.level = 0.05)

Arguments

d
numeric, raw effect
se numeric, standard error
df numeric, degrees of freedom of the t-distribution
sig.level numeric, significance level, defaults to 0.05

Value

a scalar

Examples

tTestPwr (4, 1, 10) ; tTestPwr (4,1,30) ; tTestPwr (4,1,Inf)

Description

From Kasza et al "Sample size and power calculations for open cohort longitudinal cluster rondomized trials" 2020

Usage

VarClosed_Kasza(trtMat, tau, gamma $=0$, psi $=0$, sigma, N , chi)

Arguments

trtMat	a matrix trtMat to define treatment allocation, where rows and columns corre- spond to cluster and timepoints, respectively
tau	numeric, standard deviation of random intercepts
gamma	numeric, random time effect
psi	numeric, random subject specific intercept.
sigma	numeric, residual error on subject level.
N	numeric, number of individuals per cluster.
chi	Attrition factor

Value

numeric, variance of the estimator for treatment effect

Examples

```
## test setting, from Hussey&Hughes 2007 ####
trtMat <- construct_DesMat(c(6,6,6,6))$trtMat
tau <- .025 ; sigma <- sqrt(.041*.959) ; N <- 100 ;
gamma <- 0.01 ; psi <- . 1 ; chi <- . }
tmp <- VarClosed_Kasza(trtMat, tau=tau, sigma=sigma, gamma=0, psi=0, N=N, chi=0)
tTestPwr((.05-.032), sqrt(tmp), df = Inf)
glsPower(Cl = rep(6,4), N=N, mu0=.05, mu1=.032, verbose=0,
            sigma=sigma, gamma=0, tau=tau, psi=0)
tmp <- VarClosed_Kasza(trtMat, tau=tau, sigma=sigma, gamma=gamma, psi=psi, N=N, chi=0)
tTestPwr((.05-.032), sqrt(tmp), df = Inf)
glsPower(Cl = rep(6,4), N=N, mu0=.05, mu1=.032, verbose=0,
        sigma=sigma, gamma=gamma, tau=tau, psi=psi)
tmp <- VarClosed_Kasza(trtMat, tau=tau, sigma=sigma, gamma=gamma, psi=psi, N=N, chi=1)
tTestPwr((.05-.032), sqrt(tmp), df = Inf)
glsPower(Cl = rep(6,4), N=N, mu0=.05, mu1=.032, verbose=0,
    sigma=sigma, gamma=sqrt(gamma^2+psi^2/N), tau=tau, psi=0)
tmp <- VarClosed_Kasza(trtMat, tau=tau, sigma=sigma, gamma=gamma, psi=psi, N=N, chi=chi)
tTestPwr((.05-.032), sqrt(tmp), df = Inf)
glsPower(Cl = rep(6,4), N=N, mu0=.05, mu1=.032, verbose=0,
    sigma=sigma, gamma=sqrt(gamma^2+chi*psi^2/N), tau=tau, psi=sqrt(1-chi)*psi)
```

VarClosed_Li Closed formula for treatment variance, with proportional decay

Description

From Li et al "Design and analysis considerations for cohort stepped wedge cluster randomized trials with a decay correlation structure"

Usage

VarClosed_Li(trtMat, tau, psi, N, AR)

Arguments

trtMat a matrix trtMat to define treatment allocation, where rows and columns correspond to cluster and timepoints, respectively
tau numeric, standard deviation of random intercepts
psi numeric, random subject specific intercept.
$N \quad$ numeric, number of individuals per cluster.
AR numeric (scalar), It defines the $\operatorname{AR}(1)$-correlation of random effects.

Value

numeric, variance of the estimator for treatment effect

Examples

\#\# test setting, from Hussey\&Hughes 2007 \#\#\#\#
trtMat <- construct_DesMat $(c(6,6,6,6))$ \$trtMat
tau <- . 025 ; N <- 100 ; psi <- . 1 ; AR <- . 6
tmp <- VarClosed_Li(trtMat, tau=tau, psi=psi, N=N, AR=AR)
tTestPwr ((.05-.032), se=sqrt(tmp), Inf)
glsPower (Cl=rep(6,4), mu $0=.05$, mu1 $=.032$, $A R=A R$, tau=tau, $N=N$, sigma=0, psi=psi, verbose=0)

Index

```
alpha012_to_RandEff,2
compute_glsPower, 3
compute_InfoContent, 4
construct_CovBlk, 5
construct_CovMat, 6
construct_CovSubMat, 7
construct_DesMat, }
construct_incompMat, 10
construct_timeAdjust,11
construct_trtMat, 12
glsPower, 12
plot.DesMat,17
plot.glsPower,18
plot_CellWeights,19
plot_CovMat, 19
plot_InfoContent,20
print.DesMat, 21
print.glsPower, 21
RandEff_to_alpha012,22
SteppedPower-package
    (SteppedPower-pkg), 22
SteppedPower-pkg, 22
tTestPwr,23
VarClosed_Kasza, 23
VarClosed_Li, 24
```

