Type Package
Title Targeted Gold Standard Testing
Version 1.0
Date “2020-11-20”
Authors Yizhen Xu, Tao Liu
Maintainer Yizhen (yizhen_xu@alumni.brown.edu)
Description This package implements the optimal allocation of gold standard testing under constrained availability.
License GPL
URL https://github.com/yizhenxu/TGST
Depends R (>= 3.2.0)
LazyData true
###TGST
Create a TGST Object
####Description
Create a TGST object, usually used as an input for optimal rule search and ROC analysis.
####Usage
TGST( Z, S, phi, method=“nonpar”)
####Arguments
- Z A vector of true disease status (No disease / treatment success coded as Z=0, diseased / treatment failure coded as Z=1).
- S Risk score.
- phi Percentage of patients taking gold standard test.
- method Method for searching for the optimal tripartite rule, options are “nonpar” (default) and “semipar”.
####Value
An object of class TGST.The class contains 6 slots: phi (percentage of gold standard tests), Z (true failure status), S (risk score), Rules (all possible tripartite rules), Nonparametric (logical indicator of the approach), and FNR.FPR (misclassification rates).
####Author(s)
Yizhen Xu (yizhen_xu@brown.edu), Tao Liu, Joseph Hogan
####References
T. Liu, J. Hogan, L. Wang, S. Zhang, R. Kantor (2013) Journal of the American Statistical Association Vol.108, No.504
####Examples
d = Simdata
Z = d$Z # True Disease Status
S = d$S # Risk Score
phi = 0.1 #10% of patients taking viral load test
TGST( Z, S, phi, method="nonpar")
###Check.exp.tilt
Check exponential tilt model assumption
####Description
This function provides graphical assessment to the suitability of the exponential tilt model for risk score in finding optimal tripartite rules by semiparametric approach. g1(s)=exp(β∗0+β1∗s)∗g0(s)
####Usage
Check.exp.tilt( Z, S)
####Arguments
- Z True disease status (No disease / treatment success coded as Z=0, diseased / treatment failure coded as Z=1).
- S Risk score.
####Value
Returns the plot of empirical density for risk score S, joint empirical density for (S,Z=1) and (S,Z=0), and the density under the exponential tilt model assumption for (S,Z=1) and (S,Z=0).
####Author(s)
Yizhen Xu (yizhen_xu@alumni.brown.edu), Tao Liu, Joseph Hogan
####References
T. Liu, J. Hogan, L. Wang, S. Zhang, R. Kantor (2013) Journal of the American Statistical Association Vol.108, No.504
####Examples
###CV.TGST
Cross Validation
####Description
This function allows you to compute the average of misdiagnoses rate for viral failure and the optimal risk under min λ rules from K-fold cross-validation.
####Usage
CV.TGST(Obj, lambda, K=10)
####Arguments
- Obj An object of class TGST.
- lambda A user-specified weight that reflects relative loss for the two types of misdiagnoses, taking value in [0,1]. Loss=λ∗I(FN)+(1−λ)∗I(FP).
- K Number of folds in cross validation. The default is 10.
####Value
Cross validated results on false classification rates (FNR, FPR), λ− risk, total misclassification rate and AUC.
####Author(s)
Yizhen Xu (yizhen_xu@alumni.brown.edu), Tao Liu, Joseph Hogan
####References
T. Liu, J. Hogan, L. Wang, S. Zhang, R. Kantor (2013) Journal of the American Statistical Association Vol.108, No.504
####Examples
data = Simdata
Z = d$Z # True Disease Status
S = d$S # Risk Score
phi = 0.1 #10% of patients taking viral load test
Obj = TVLT(Z, S, phi, method="nonpar")
CV.TGST(Obj, lambda, K=10)
###OptimalRule
Optimal Tripartite Rule
###Description
This function gives you the optimal tripartite rule that minimizes the min-λ risk based on the type of user selected approach. It takes the risk score and true disease status from a training data set and returns the optimal tripartite rule under the specified proportion of patients able to take gold standard test.
####Usage
OptimalRule(Obj, lambda)
####Arguments
- Z
- Obj An object of class TGST.
- lambda A user-specified weight that reflects relative loss for the two types of misdiagnoses, taking value in [0,1]. Loss=λ∗I(FN)+(1−λ)∗I(FP).
####Value
Optimal tripartite rule.
####Author(s)
Yizhen Xu (yizhen_xu@alumni.brown.edu), Tao Liu, Joseph Hogan
####References
T. Liu, J. Hogan, L. Wang, S. Zhang, R. Kantor (2013) Journal of the American Statistical Association Vol.108, No.504
####Examples
d = Simdata
Z = d$Z # True Disease Status
S = d$S # Risk Score
phi = 0.1 #10% of patients taking viral load test
lambda = 0.5
Obj = TGST(Z, S, phi, method="nonpar")
OptimalRule(Obj, lambda)
###ROCAnalysis
ROC Analysis
####Description
This function performs ROC analysis for tripartite rules. If ‘plot=TRUE’, the ROC curve is returned.
####Usage
ROCAnalysis(Obj, plot=TRUE)
####Arguments
- Obj An object of class TGST.
- plot Logical parameter indicating if ROC curve should be plotted. Default is ‘plot=TRUE’. If false, then only AUC is calculated.
####Value
AUC (the area under ROC curve) and ROC curve.
####Author(s)
Yizhen Xu (yizhen_xu@alumni.brown.edu), Tao Liu, Joseph Hogan
####References
T. Liu, J. Hogan, L. Wang, S. Zhang, R. Kantor (2013) Journal of the American Statistical Association Vol.108, No.504
####Examples
d = Simdata
Z = d$Z # True Disease Status
S = d$S # Risk Score
phi = 0.1 #10% of patients taking viral load test
lambda = 0.5
Obj = TGST(Z, S, phi, method="nonpar")
ROCAnalysis(Obj, plot=TRUE)
###nonpar.rules
Nonparametric Rules Set
####Description
This function gives you all possible cutoffs [l,u] for tripartite rules, by applying nonparametric search to the given data. P(S∈[l,u])≤ϕ
####Usage
nonpar.rules( Z, S, phi)
####Arguments
- Z True disease status (No disease / treatment success coded as Z=0, diseased / treatment failure coded as Z=1).
- S Risk score.
- phi Percentage of patients taking viral load test.
####Value
Matrix with 2 columns. Each row is a possible tripartite rule, with output on lower and upper cutoff.
####Author(s)
Yizhen Xu (yizhen_xu@brown.edu), Tao Liu, Joseph Hogan
####References
T. Liu, J. Hogan, L. Wang, S. Zhang, R. Kantor (2013) Journal of the American Statistical Association Vol.108, No.504
####Examples
d = Simdata
Z = d$Z # True Disease Status
S = d$S # Risk Score
phi = 0.1 #10\% of patients taking viral load test
nonpar.rules( Z, S, phi)
###nonpar.fnr.fpr
Nonparametric FNR FPR of the rules
####Description
This function gives you the nonparametric FNRs and FPRs associated with a given set of tripartite rules.
####Usage
nonpar.fnr.fpr(Z,S,rules[1,1],rules[1,2])
####Arguments
- Z True disease status (No disease / treatment success coded as Z=0, diseased / treatment failure coded as Z=1).
- S Risk score.
- l Lower cutoff of tripartite rule.
- u Upper cutoff of tripartite rule.
####Value
Matrix with 2 columns. Each row is a set of nonparametric (FNR, FPR) on an associated tripartite rule.
####Author(s)
Yizhen Xu (yizhen_xu@brown.edu), Tao Liu, Joseph Hogan
####References
T. Liu, J. Hogan, L. Wang, S. Zhang, R. Kantor (2013) Journal of the American Statistical Association Vol.108, No.504
####Examples
d = Simdata
Z = d$Z # True Disease Status
S = d$S # Risk Score
phi = 0.1 #10\% of patients taking viral load test
rules = nonpar.rules( Z, S, phi)
nonpar.fnr.fpr(Z,S,rules[1,1],rules[1,2])
###semipar.fnr.fpr
Semiparametric FNR FPR of the rules
####Description
This function gives you the semiparametric FNR and FPR associated with a set of given tripartite rules.
####Usage
semipar.fnr.fpr(Z,S,rules[1,1],rules[1,2])
####Arguments
- Z True disease status (No disease / treatment success coded as Z=0, diseased / treatment failure coded as Z=1).
- S Risk score.
- l Lower cutoff of tripartite rule.
- u Upper cutoff of tripartite rule.
####Value
Matrix with 2 columns. Each row is a set of semiparametric (FNR, FPR) on an associated tripartite rule.
####Author(s)
Yizhen Xu (yizhen_xu@brown.edu), Tao Liu, Joseph Hogan
####References
T. Liu, J. Hogan, L. Wang, S. Zhang, R. Kantor (2013) Journal of the American Statistical Association Vol.108, No.504
####Examples
d = Simdata
Z = d$Z # True Disease Status
S = d$S # Risk Score
phi = 0.1 #10\% of patients taking viral load test
rules = nonpar.rules( Z, S, phi)
semipar.fnr.fpr(Z,S,rules[1,1],rules[1,2])
###cal.AUC
Calculate AUC
####Description
This function gives you the AUC associated with the rules set.
####Usage
cal.AUC(Z,S,rules[,1],rules[,2])
####Arguments
- Z True disease status (No disease / treatment success coded as Z=0, diseased / treatment failure coded as Z=1).
- S Risk score.
- l Lower cutoff of tripartite rule.
- u Upper cutoff of tripartite rule.
####Value
AUC.
####Author(s)
Yizhen Xu (yizhen_xu@brown.edu), Tao Liu, Joseph Hogan
####References
T. Liu, J. Hogan, L. Wang, S. Zhang, R. Kantor (2013) Journal of the American Statistical Association Vol.108, No.504
####Examples
d = Simdata
Z = d$Z # True Disease Status
S = d$S # Risk Score
phi = 0.1 #10% of patients taking viral load test
rules = nonpar.rules( Z, S, phi)
cal.AUC(Z,S,rules[,1],rules[,2])
###Simdata
Simulated data for package illustration
####Description
A simulated dataset containing true disease status and risk score. See details for simulation setting.
####Format
A data frame with 8000 simulated observations on the following 2 variables. - Z True disease status (No disease / treatment success coded as Z=0, diseased / treatment failure coded as Z=1). - S Risk score. Higher risk score indicates larger tendency of diseased / treatment failure.
####Details
We first simulate true failure status Z assuming Z∼Bernoulli(p) with p=0.25; and then conditional on Z, simulate S|Z=z=ceiling(W) with W∼Gamma(ηz,κz) where η and κ are shape and scale parameters.(η0,κ0)=(2.3,80) and (η1,κ1)=(9.2,62).
####Author(s)
Yizhen Xu (yizhen_xu@brown.edu), Tao Liu, Joseph Hogan
####References
T. Liu, J. Hogan, L. Wang, S. Zhang, R. Kantor (2013) Journal of the American Statistical Association Vol.108, No.504
####Examples