Package ‘VectrixDB’

February 20, 2026
Type Package

Title Lightweight Vector Database with Embedded Machine Learning
Models

Version 1.1.2
Author Kwadwo Daddy Nyame Owusu Boakye [aut, cre]
Maintainer Kwadwo Daddy Nyame Owusu Boakye <kwadwo. owusuboakye@outlook.com>

Description A lightweight vector database for text retrieval in R with embedded
machine learning models and no external API (Application Programming
Interface) keys. Supports dense and hybrid search, optional HNSW
(Hierarchical Navigable Small World) approximate nearest-neighbor indexing,
faceted filters with ACL (Access Control List) metadata, command-line
tools, and a local dashboard built with 'shiny'. The HNSW method is
described by Malkov and Yashunin (2018) <doi:10.1109/TPAMI.2018.2889473>.

License Apache License (>=2)
Encoding UTF-8
RoxygenNote 7.3.2

Imports R6, jsonlite, digest, Matrix, text2vec (>= 0.6.0), stopwords,
tools, utils, stats, RSQLite, DBI

Suggests testthat (>= 3.0.0), shiny, plumber, pkgdown, RcppAnnoy,
reticulate, rappdirs

Config/testthat/edition 3

URL https://knowusuboaky.github.io/vectrixdb-r/,
https://github.com/knowusuboaky/vectrixdb-r

BugReports https://github.com/knowusuboaky/vectrixdb-r/issues
NeedsCompilation no

Repository CRAN

Date/Publication 2026-02-20 11:40:19 UTC

https://doi.org/10.1109/TPAMI.2018.2889473
https://knowusuboaky.github.io/vectrixdb-r/
https://github.com/knowusuboaky/vectrixdb-r
https://github.com/knowusuboaky/vectrixdb-r/issues

2 Contents

Contents
ACLConfig e 4
ACLFilter e 5
ACLOPperator oo e e e 6
ACLPrincipal e 7
acl_config_from_list 8
AdvancedReranker e 8
advanced_search e 10
AnalyzerChain 10
BaseCache e 11
cache e e 14
CacheBackend 14
CacheConfig e 15
CacheEntry e e 16
CacheStats e e e e e e 17
cache_config_from_env 18
cli . e 19
CLIConfig e 19
Collection e e e e 20
CommMUNILY v v e e e e e 23
CommunityDetector e 24
create_cache e e e e e e 25
create_default_graphrag config 25
create_hnsw_Index L e e e 26
create_pipeline 26
create_sentence_embedder L e 27
create_vector_cache e 27
DenseEmbedder e e 28
DistanceMetric e e e e e e e 29
DocumentChunker e 30
download_vVectors e e e e e 31
download_word_Vectors 31
embedders L. e e e 32
ENGLISH_STOPWORDS e 32
EnhancedSearchResults 33
Entity e e 34
ExtractionResult 35
ExtractorType 36
FacetAggregator. L e 36
FacetConfig e 37
FacetResult e 38
FacetValue 39
FileCache e e e 40
Filter. e 42
GlobalSearcher e 44
GlobalSearchResult e 45

graphrag 46

Contents

3
GraphRAGConfig e e 46
GraphRAGPipeline e 48
GraphSearchType 49
NSW e 50
HNSWIndex e e e e e 50
KeywordAnalyzer 53
KnowledgeGraph e 54
LateInteractionEmbedder 56
LLMProvider e e e e 57
load_hnsw_index e 58
load_word_Vectors e e e 58
LocalSearcher e e e e e e 59
LocalSearchResult 60
MemoryCache e 61
MMRReranker e e e e e e 63
NoCache e e 64
parse_acl 65
quick_search e e e e 66
RegexExtractor e 66
Relationship e 67
reranker L e e 68
RerankerEmbedder e 69
Result e 70
Results e e 71
SearchMode e e e 73
SentenceEmbedder 73
SEIVEL & o vt e v e e e e e e e e e e e e e e e e 75
set_cli_config 75
SimpleStemmer L. e e e e 75
SparseEmbedder Lo 76
SLOTAZE . .« v v v o e e e e e e e e e e e e 77
SubGraph e 78
TextAnalyzer e 79
TextUnit e 81
text_analyzer_english L 82
text_analyzer_keyword L e 82
text_analyzer_simple 83
text_analyzer_standard 83
vdb_add e e e 83
vdb_add_dir 84
vdb _create e 85
vdb_dashboard e 85
vdb_dashboard_simple 86
vdb _delete s 86
vdb_delete_docs e 87
vdb_eXport e e e e e e 88
vdb_get e e e 88

vdb_import e 89

4 ACLConfig
vdb_info e e e e 89
vdb_interactive e e e e e e e e e e e e e e e 90
vdb_list e 90
vdb_open . ..o e e e 91
vdb_search e 91
vdb_Stats . ..o e e e 92
VectorCache e e e e e 93
VECHIIX o o o e e e e 95
VectrixDB e e 100
VECIIIX_CIEALE v v v o e e e e e e e e e 102
vectrix_info e e 103
VECHIX_OPEN + v v v v v v e e e e e e e e e e e e e e e e e e e 103
VECIIIX_SEIVE . v v v v v o e e e e e e e e e e e e e e e e e 104
WOTA_VECIOTS v v o o e e e e e e e e e e e e 104

Index 105

ACLConfig ACL Configuration

Description

ACL configuration for a document or collection
Public fields
read_principals Who can read
deny_principals Who cannot read (takes precedence)
is_public Is public access allowed
Methods

Public methods:

e ACLConfig$new()
* ACLConfig$clone()

Method new(): Create a new ACLConfig

Usage:

ACLConfig$new(

read_principals = list(),
deny_principals = list(),
is_public = FALSE

)

Arguments:

read_principals List of ACLPrincipal objects
deny_principals List of ACLPrincipal objects

ACLFilter

is_public Logical

Method clone(): The objects of this class are cloneable with this method.

Usage:
ACLConfig$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

ACLFilter ACL Filter

Description

Access Control List filter for security-aware search

Public fields
acl_field Metadata field containing ACLs

Methods

Public methods:
e ACLFilter$new()
e ACLFilter$filter()
e ACLFilter$add_acl()
e ACLFilter$create_filter_condition()
e ACLFilter$clone()

Method new(): Create a new ACLFilter

Usage:
ACLFilter$new(acl_field = "_acl")

Arguments:
acl_field Field name for ACLs (default: "_acl")

Method filter(): Filter documents based on user’s ACL principals

Usage:
ACLFilter$filter(documents, user_principals, default_allow = FALSE)

Arguments:

documents List of documents with metadata
user_principals Character vector or list of ACLPrincipal
default_allow Allow if no ACL defined (default: FALSE)

Returns: Filtered documents

6 ACLOperator

Method add_acl(): Add ACL to document metadata
Usage:
ACLFilter$add_acl(metadata, principals)

Arguments:
metadata Document metadata
principals Character vector of principal strings

Returns: Updated metadata

Method create_filter_condition(): Create ACL filter condition for query
Usage:
ACLFilter$create_filter_condition(user_principals)

Arguments:
user_principals Character vector of principals

Returns: Filter condition list

Method clone(): The objects of this class are cloneable with this method.
Usage:
ACLFilter$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

Examples

Not run:
acl_filter <- ACLFilter$new()
filtered <- acl_filter$filter(
documents = results,
user_principals = c("user:alice”, "group:engineering")

)

End(Not run)

ACLOperator ACL Operator Types

Description

ACL matching operators

Usage
ACLOperator

Format

An object of class 1ist of length 5.

ACLPrincipal

ACLPrincipal ACL Principal

Description

An ACL principal (user, group, or role)

Public fields

type Principal type

value Principal value

Methods

Public methods:
e ACLPrincipal$new()
* ACLPrincipal$matches()
e ACLPrincipal$to_string()
¢ ACLPrincipal$clone()

Method new(): Create a new ACLPrincipal

Usage:
ACLPrincipal$new(type, value)

Arguments:
type Principal type (user, group, role)
value Principal value
Method matches(): Check if this principal matches another

Usage:
ACLPrincipal$matches(other)

Arguments:
other Another ACLPrincipal

Returns: Logical

Method to_string(): Convert to string
Usage:
ACLPrincipal$to_string()
Method clone(): The objects of this class are cloneable with this method.
Usage:
ACLPrincipal$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

AdvancedReranker

acl_config_from_list Create ACL Config from List

Description

Create ACLConfig from list of ACL strings

Usage

acl_config_from_list(acl_list)

Arguments

acl_list Character vector of ACL strings

Value

ACLConfig object

AdvancedReranker Advanced Reranker with Learned Weights

Description

Combines multiple signals for better reranking:

* Semantic similarity (word vectors)
* BM25/keyword overlap

* Query coverage

* Position bias

* Length normalization

Public fields

weights Feature weights

Methods
Public methods:

¢ AdvancedReranker$new()

¢ AdvancedReranker$set_embedder ()
¢ AdvancedReranker$rerank()

* AdvancedReranker$learn_weights()
¢ AdvancedReranker$clone()

AdvancedReranker

Method new(): Create a new AdvancedReranker

Usage:

AdvancedReranker$new(
semantic_weight = 0.4,
bm25_weight = 0.3,

coverage_weight = 0.2,
position_weight = 0.1,
sentence_embedder = NULL
)
Arguments:

semantic_weight Weight for semantic similarity (0-1)
bm25_weight Weight for BM25 score (0-1)
coverage_weight Weight for query term coverage (0-1)
position_weight Weight for position bias (0-1)

sentence_embedder Optional SentenceEmbedder for semantic scoring

Method set_embedder(): Set sentence embedder

Usage:
AdvancedReranker$set_embedder (embedder)

Arguments:

embedder SentenceEmbedder object

Method rerank(): Rerank results

Usage:
AdvancedReranker$rerank(

query,
query_vector = NULL,
results,
doc_vectors = NULL,
limit = 10
)
Arguments:
query Query text
query_vector Query embedding vector
results List of result objects with id, text, score
doc_vectors Matrix of document vectors (optional)

limit Number of results to return

Returns: Reranked list of results

Method learn_weights(): Learn optimal weights from relevance judgments

Usage:

10 AnalyzerChain

AdvancedReranker$learn_weights(
queries,
results_list,
relevance_list,
iterations = 100

)

Arguments:

queries Character vector of queries

results_list List of result lists (one per query)
relevance_list List of relevance scores (1=relevant, O=not)

iterations Number of optimization iterations

Method clone(): The objects of this class are cloneable with this method.

Usage:
AdvancedReranker$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

advanced_search VectrixDB Advanced Search Features

Description
Enterprise-grade search capabilities:
* Faceted search with aggregations

* ACL/Security filtering

» Text analyzers (stemming, synonyms, stopwords)

AnalyzerChain Analyzer Chain

Description

Chain multiple analyzers together

Public fields

analyzers List of TextAnalyzer objects

BaseCache

Methods

Public methods:

e AnalyzerChain$new()
¢ AnalyzerChain$analyze()
* AnalyzerChain$clone()

Method new(): Create a new AnalyzerChain

Usage:
AnalyzerChain$new(analyzers)

Arguments:

analyzers List of TextAnalyzer objects

Method analyze(): Run text through all analyzers

Usage:
AnalyzerChain$analyze(text)

Arguments:

text Input text

Returns: Character vector of tokens

Method clone(): The objects of this class are cloneable with this method.

Usage:
AnalyzerChain$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

11

BaseCache Base Cache

Description

Abstract base class for cache backends

Public fields

config Cache configuration

stats Cache statistics

12 BaseCache

Methods

Public methods:
* BaseCache$new()
¢ BaseCache$get ()
¢ BaseCache$set()
* BaseCache$delete()
* BaseCache$exists()
* BaseCache$clear()
e BaseCache$size()
* BaseCache$get_many()
* BaseCache$set_many()
* BaseCache$delete_many()
* BaseCache$make_key()
e BaseCache$clone()

Method new(): Create a new cache
Usage:
BaseCache$new(config = NULL)

Arguments:

config CacheConfig object

Method get(): Get a value from cache
Usage:
BaseCache$get (key)
Arguments:

key Cache key
Returns: Cached value or NULL

Method set(): Seta value in cache
Usage:
BaseCache$set(key, value, ttl = NULL)
Arguments:
key Cache key
value Value to cache
ttl Time to live (optional)

Method delete(): Delete a key from cache
Usage:
BaseCache$delete(key)
Arguments:

key Cache key

BaseCache

Returns: Logical success

Method exists(): Check if key exists

Usage:
BaseCache$exists(key)

Arguments:

key Cache key

Returns: Logical

Method clear(): Clear all cache entries
Usage:
BaseCache$clear ()

Method size(): Get cache size

Usage:
BaseCache$size()

Returns: Integer count

Method get_many(): Get multiple values
Usage:
BaseCache$get_many(keys)

Arguments:

keys Character vector of keys

Returns: Named list of values

Method set_many(): Set multiple values

Usage:
BaseCache$set_many(items, ttl = NULL)

Arguments:
items Named list of values
ttl Time to live

Method delete_many(): Delete multiple keys

Usage:
BaseCache$delete_many(keys)

Arguments:

keys Character vector of keys

Returns: Integer count of deleted keys

Method make_key(): Make a prefixed key

Usage:
BaseCache$make_key (key)

14

Arguments:
key Raw key

Returns: Prefixed key

Method clone(): The objects of this class are cloneable with this method.

Usage:
BaseCache$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

CacheBackend

cache VectrixDB Cache Layer

Description
High-performance caching for low latency

Supports multiple cache backends:

* InMemory LRU: Ultra-fast, limited by RAM
* File-based: Persistent cache using RDS files

CacheBackend Cache Backend Types

Description

Available cache backends

Usage

CacheBackend

Format

An object of class 1ist of length 3.

CacheConfig

15

CacheConfig Cache Configuration

Description

Configuration for cache layer

Public fields

backend Cache backend type
memory_max_size Max items in memory
memory_ttl_seconds Default TTL in seconds
file_cache_dir Directory for file cache
file_ttl_seconds File cache TTL

prefix Cache key prefix

compression Use compression

Methods

Public methods:

* CacheConfig$new()
e CacheConfig$clone()

Method new(): Create a new CacheConfig

Usage:
CacheConfig$new(
backend = "memory",

memory_max_size = 10000,
memory_ttl_seconds = 3600,
file_cache_dir = NULL,
file_ttl_seconds = 86400,

prefix = "vectrix:",
compression = TRUE
)
Arguments:

backend Backend type
memory_max_size Max memory items
memory_ttl_seconds Memory TTL
file_cache_dir File cache directory
file_ttl_seconds File TTL

prefix Key prefix

compression Use compression

16

Method clone(): The objects of this class are cloneable with this method.
Usage:
CacheConfig$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

CacheEntry

CacheEntry Cache Entry

Description

A cached entry with metadata

Public fields

value Cached value
created_at Creation timestamp
ttl Time to live in seconds
hits Number of hits

Methods

Public methods:

e CacheEntry$new()
e CacheEntry$is_expired()
e CacheEntry$clone()

Method new(): Create a new CacheEntry

Usage:
CacheEntry$new(value, ttl)

Arguments:
value The value to cache
ttl Time to live in seconds

Method is_expired(): Check if entry is expired

Usage:
CacheEntry$is_expired()

Returns: Logical

Method clone(): The objects of this class are cloneable with this method.

Usage:

CacheEntry$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

CacheStats

CacheStats Cache Statistics

Description

Cache statistics for monitoring

Public fields
hits Cache hits

misses Cache misses
sets Cache sets
deletes Cache deletes

evictions Cache evictions

Methods

Public methods:
* CacheStats$record_hit()
* CacheStats$record_miss()
* CacheStats$record_set()
e CacheStats$record_delete()
e CacheStats$record_eviction()
e CacheStats$hit_rate()
e CacheStats$to_list()
e CacheStats$reset()
* CacheStats$clone()

Method record_hit(): Record a cache hit
Usage:
CacheStats$record_hit()

Method record_miss(): Record a cache miss

Usage:
CacheStats$record_miss()

Method record_set(): Record a cache set
Usage:
CacheStats$record_set()

Method record_delete(): Record a cache delete

Usage:
CacheStats$record_delete()

18 cache_config_from_env

Method record_eviction(): Record a cache eviction

Usage:
CacheStats$record_eviction()

Method hit_rate(): Get hit rate

Usage:
CacheStats$hit_rate()

Returns: Numeric hit rate

Method to_list(): Convert to list

Usage:
CacheStats$to_list()

Returns: List representation

Method reset(): Reset statistics

Usage:
CacheStats$reset()

Method clone(): The objects of this class are cloneable with this method.
Usage:
CacheStats$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

cache_config_from_env Create Cache Config from Environment

Description

Create config from environment variables

Usage

cache_config_from_env()

Value

CacheConfig object

cli

cli

VectrixDB Command Line Interface

Description

CLI tools for VectrixDB operations

Provides command-line style functions for:

* Creating and managing collections
* Adding and searching documents
* Exporting and importing data

* Database statistics and info

CLIConfig CLI Configuration

Description

Configuration for CLI behavior

Public fields

verbose Print verbose output

color Use colored output
data_dir Default data directory

Methods

Public methods:
e CLIConfig$new()
e CLIConfig$clone()

Method new(): Create CLI config
Usage:
CLIConfig$new(verbose = TRUE, color = TRUE, data_dir = NULL)
Arguments:
verbose Verbose output
color Colored output
data_dir Data directory

Method clone(): The objects of this class are cloneable with this method.
Usage:
CLIConfig$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

20

Collection

Collection Collection Class

Description

Vector collection with indexing and search

Public fields

name

Collection name

dimension Vector dimension

metric Distance metric

language Language setting ("en" or "ml")

Methods

Public methods:

Collection$new()
Collection$add()
Collection$search()
Collection$keyword_search()
Collection$hybrid_search()
Collection$get()
Collection$delete()
Collection$count()
Collection$clear()
Collection$clone()

Method new(): Create a new Collection

Usage:

Collection$new(
name,
dimension,
metric = "cosine”,
storage = NULL,
language = "en"”

)

Arguments:

name Collection name

dimension Vector dimension

metric Distance metric

storage Storage backend

language Language behavior ("en" = ASCII-focused, "ml" = Unicode-aware)

Collection 21

Method add(): Add documents to collection
Usage:
Collection$add(ids, vectors, metadata = NULL, texts = NULL)
Arguments:
ids Document IDs
vectors Matrix of vectors
metadata List of metadata
texts Character vector of texts

Method search(): Search collection
Usage:
Collection$search(query, limit = 10, filter = NULL, include_vectors = FALSE)
Arguments:
query Query vector
limit Number of results
filter Metadata filter
include_vectors Include vectors in results

Returns: Results object

Method keyword_search(): Keyword search
Usage:
Collection$keyword_search(query_text, limit = 10, filter = NULL)

Arguments:

query_text Query text
limit Number of results
filter Metadata filter

Returns: Results object

Method hybrid_search(): Hybrid search (dense + sparse)

Usage:

Collection$hybrid_search(
query,
query_text,
limit = 10,
vector_weight =
text_weight = 0.
filter = NULL,
include_vectors = FALSE,
rrf_k = 60,
prefetch_multiplier = 10

0.5,
5,

)

Arguments:

query Query vector

Collection

query_text Query text

limit Number of results

vector_weight Weight for vector search
text_weight Weight for text search
filter Metadata filter

include_vectors Include vectors in results
rrf_k RRF constant
prefetch_multiplier Prefetch multiplier

Returns: Results object

Method get(): Get documents by ID

Usage:
Collection$get(ids)

Arguments:

ids Document IDs

Returns: List of results

Method delete(): Delete documents by ID

Usage:
Collection$delete(ids)

Arguments:

ids Document IDs to delete

Method count(): Get document count

Usage:
Collection$count()

Returns: Integer count

Method clear(): Clear collection

Usage:
Collection$clear()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Collection$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Community

23

Community Community

Description

A community of entities

Public fields

id Community ID

level Hierarchy level
entity_ids Member entity IDs
summary Community summary
parent_id Parent community ID
child_ids Child community IDs

Methods
Public methods:

e Community$new()
e Community$size()
e Community$clone()

Method new(): Create a new Community

Usage:
Community$new(
id,
level = 0,

entity_ids = character(@),
summary = NULL,
parent_id = NULL

)

Arguments:

id ID

level Level

entity_ids Members

summary Summary

parent_id Parent

Method size(): Get size

Usage:
Community$size()

Returns: Integer

24 CommunityDetector

Method clone(): The objects of this class are cloneable with this method.
Usage:
Community$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

CommunityDetector Simple Community Detector

Description

Detects communities using connected components

Public fields

min_size Minimum community size

max_levels Maximum hierarchy levels

Methods

Public methods:
e CommunityDetector$new()
e CommunityDetector$detect()
e CommunityDetector$clone()

Method new(): Create a new CommunityDetector

Usage:
CommunityDetector$new(min_size = 5, max_levels = 3)

Arguments:
min_size Min size
max_levels Max levels

Method detect(): Detect communities in graph

Usage:
CommunityDetector$detect(graph)

Arguments:
graph KnowledgeGraph object

Returns: List of Community objects

Method clone(): The objects of this class are cloneable with this method.

Usage:
CommunityDetector$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

create_cache 25

create_cache Create Cache

Description

Factory function to create cache backend

Usage

create_cache(config = NULL)

Arguments

config CacheConfig object or NULL for defaults

Value

Cache object

create_default_graphrag_config
Create Default GraphRAG Config

Description

Create default config with regex extractor

Usage

create_default_graphrag_config(...)

Arguments

Additional options

Value

GraphRAGConfig object

26

create_pipeline

create_hnsw_index Create HNSW Index

Description

Factory function to create HNSW index

Usage

create_hnsw_index(dimension, metric = "angular”, n_trees = 50)
Arguments

dimension Vector dimension

metric Distance metric

n_trees Number of trees
Value

HNSWIndex object

create_pipeline Create GraphRAG Pipeline

Description

Factory function for GraphRAGPipeline

Usage

create_pipeline(config = NULL)

Arguments

config GraphRAGConfig (optional)

Value

GraphRAGPipeline object

create_sentence_embedder 27

create_sentence_embedder
Create a sentence embedder with automatic download

Description

Convenience function to create a SentenceEmbedder with GloVe vectors

Usage

create_sentence_embedder (model = "glove-100", use_idf = TRUE)
Arguments

model Model name (default: "glove-100")

use_idf Use IDF weighting
Value

SentenceEmbedder object

Examples

Not run:
Downloads GloVe if not present
embedder <- create_sentence_embedder(”"glove-100")

Embed texts
vectors <- embedder$embed(c("Hello world"”, "Machine learning is cool”))

End(Not run)

create_vector_cache Create Vector Cache

Description

Create a VectorCache with specified backend

Usage

create_vector_cache(backend = "memory”, ...)
Arguments

backend Backend type: "memory", "file", or "none"

Additional config options

28 DenseEmbedder

Value

VectorCache object

DenseEmbedder Dense Embedder using word2vec or GloVe

Description

Generates dense vector embeddings using pre-trained word vectors

Public fields

dimension Embedding dimension
model_type Type of model being used

language Language setting ("en" or "ml")

Methods

Public methods:

¢ DenseEmbedder$new()

* DenseEmbedder$set_sentence_embedder ()
¢ DenseEmbedder$embed()

¢ DenseEmbedder$fit()

¢ DenseEmbedders$clone()

Method new(): Create a new DenseEmbedder

Usage:

DenseEmbedder$new(
dimension = 100,
model_path = NULL,
model_type = "tfidf",
sentence_embedder = NULL,
auto_download = FALSE,

n n

language = "en
)
Arguments:
dimension Vector dimension (default: 100 for word2vec, 50/100/200/300 for GloVe)
model_path Optional path to pre-trained model file
model_type Type: "word2vec", "glove", "glove-pretrained", or "tfidf"
sentence_embedder Optional SentenceEmbedder object to use
auto_download Auto-download GloVe vectors if model_type is glove-pretrained

language Language behavior ("en" = ASCII-focused, "ml" = Unicode-aware)

Method set_sentence_embedder(): Set a SentenceEmbedder to use for embeddings

DistanceMetric

Usage:
DenseEmbedder$set_sentence_embedder (embedder)

Arguments:
embedder SentenceEmbedder object

Method embed(): Embed texts to vectors

Usage:
DenseEmbedder$embed(texts)

Arguments:

texts Character vector of texts

Returns: Matrix of embeddings (rows are documents)

Method fit(): Train embedder on corpus (for TF-IDF)

Usage:
DenseEmbedder$fit(texts)

Arguments:
texts Character vector of training texts
Method clone(): The objects of this class are cloneable with this method.

Usage:
DenseEmbedder$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

DistanceMetric Distance Metric Enumeration

Description

Available distance metrics for vector comparison

Usage

DistanceMetric

Format

An object of class 1ist of length 4.

30 DocumentChunker

DocumentChunker Document Chunker

Description

Splits documents into text units

Public fields
chunk_size Target chunk size

chunk_overlap Overlap size

by_sentence Preserve sentences

Methods

Public methods:

¢ DocumentChunker$new()
¢ DocumentChunker$chunk()
¢ DocumentChunker$clone()

Method new(): Create a new DocumentChunker
Usage:
DocumentChunker$new(chunk_size = 1200, chunk_overlap = 100, by_sentence = TRUE)
Arguments:
chunk_size Target size
chunk_overlap Overlap
by_sentence Preserve sentences

Method chunk(): Chunk a document

Usage:
DocumentChunker$chunk(text, document_id = NULL)

Arguments:
text Document text
document_id Document ID

Returns: List of TextUnit objects

Method clone(): The objects of this class are cloneable with this method.
Usage:
DocumentChunker$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

download_vectors 31

download_vectors Download pre-trained word vectors

Description

Download GloVe or other pre-trained word vectors

Usage

download_vectors(model = "glove-50", dest_dir = NULL)

Arguments
model Model name: "glove-50", "glove-100", "glove-200", "glove-300"
dest_dir Destination directory

Value

Path to downloaded model

download_word_vectors Download pre-trained word vectors

Description

Downloads GloVe or fastText word vectors

Usage

download_word_vectors(model = "glove-100", dest_dir = NULL, overwrite = FALSE)

Arguments
model Model to download: "glove-50", "glove-100", "glove-200", "glove-300", "glove-
twitter-25", "glove-twitter-50", "glove-twitter-100", "glove-twitter-200"
dest_dir Destination directory (default: user cache)
overwrite Overwrite existing files
Value

Path to the downloaded vectors file

32 ENGLISH_STOPWORDS

Examples

Not run:
Download 100-dimensional GloVe vectors (~130MB)
path <- download_word_vectors("glove-100")

Use with Vectrix
db <- Vectrix$new("docs"”, model = "glove”, model_path = path)

End(Not run)

embedders VectrixDB Embedders (Pure R Implementation)

Description

Embedding models for text vectorization using R-native packages

ENGLISH_STOPWORDS English Stopwords

Description

Common English stopwords

Usage

ENGLISH_STOPWORDS

Format

An object of class character of length 45.

EnhancedSearchResults

33

EnhancedSearchResults Enhanced Search Results

Description

Search results with enterprise features

Public fields

results List of result items

facets Named list of FacetResult objects
total_count Total results before filtering
filtered_count Results after ACL filtering
query_time_ms Query time in milliseconds
rerank_time_ms Rerank time in milliseconds

facet_time_ms Facet time in milliseconds

Methods
Public methods:

¢ EnhancedSearchResults$new()
¢ EnhancedSearchResults$to_list()
¢ EnhancedSearchResults$clone()

Method new(): Create new EnhancedSearchResults
Usage:
EnhancedSearchResults$new(

results,
facets = list(),
total_count = 0,
filtered_count = 0,
query_time_ms = 0,
rerank_time_ms = 0,
facet_time_ms = @
)
Arguments:
results List of results
facets Named list of FacetResult
total_count Total count
filtered_count Filtered count
query_time_ms Query time
rerank_time_ms Rerank time
facet_time_ms Facet time

34

Method to_list(): Convert to list
Usage:
EnhancedSearchResults$to_list()
Returns: List representation

Method clone(): The objects of this class are cloneable with this method.

Usage:

EnhancedSearchResults$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Entity

Entity Entity

Description

An extracted entity

Public fields

id Unique identifier

name Entity name

type Entity type

description Description
source_chunks Source chunk IDs
embedding Vector embedding
metadata Additional metadata

Methods

Public methods:
e Entity$new()
e Entity$to_list()
e Entity$clone()

Method new(): Create a new Entity
Usage:
Entity$new(
id = NULL,
name,
type,
description = NULL,
source_chunks = NULL,
embedding = NULL,
metadata = NULL

ExtractionResult

Arguments:

id Unique ID

name Name

type Type

description Description
source_chunks Sources
embedding Vector
metadata Metadata

Method to_list(): Convert to list
Usage:
Entity$to_list()

Method clone(): The objects of this class are cloneable with this method.

Usage:

Entity$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

35

ExtractionResult Extraction Result

Description

Result of entity extraction

Public fields

entities List of Entity objects
relationships List of Relationship objects

source_chunk Source chunk ID

Methods
Public methods:

e ExtractionResult$new()
e ExtractionResult$clone()

Method new(): Create new ExtractionResult

Usage:

ExtractionResult$new(
entities = list(),
relationships = list(),
source_chunk = NULL

)

36 FacetAggregator
Arguments:
entities Entities

relationships Relationships
source_chunk Source

Method clone(): The objects of this class are cloneable with this method.
Usage:

ExtractionResult$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

ExtractorType Extractor Types

Description

Extractor Types
Usage

ExtractorType
Format

An object of class 1ist of length 4.

FacetAggregator Facet Aggregator

Description

Faceted search aggregator for computing aggregations/counts
Methods

Public methods:

* FacetAggregator$aggregate()
e FacetAggregator$to_list()
e FacetAggregator$clone()

Method aggregate(): Aggregate facet values from documents
Usage:

FacetAggregator$aggregate(documents, facet_configs)

FacetConfig 37

Arguments:
documents List of documents with metadata
facet_configs List of field names or FacetConfig objects

Returns: Named list mapping field names to FacetResult

Method to_list(): Convert facet results to list format
Usage:
FacetAggregator$to_list(facet_results)
Arguments:
facet_results Named list of FacetResult objects
Returns: List format suitable for JSON

Method clone(): The objects of this class are cloneable with this method.
Usage:
FacetAggregator$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

Examples

Not run:
aggregator <- FacetAggregator$new()
facets <- aggregator$aggregate(
documents = list(
list(category = "tech”, author = "Alice"),
list(category = "science”, author = "Bob")
),
facet_fields = c("category”, "author”)

)

End(Not run)

FacetConfig Facet Configuration

Description

Configuration for a facet field

Public fields

field Field name to facet on

limit Max values to return
min_count Minimum count to include
sort_by Sort by "count" or "value"

include_zero Include zero-count values

38

Methods

Public methods:

e FacetConfig$new()
e FacetConfig$clone()

Method new(): Create a new FacetConfig

Usage:

FacetConfig$new(
field,
limit = 10,
min_count = 1,
sort_by = "count”,
include_zero = FALSE

)

Arguments:

field Field name

limit Max values (default: 10)

min_count Min count (default: 1)

sort_by Sort method (default: "count")
include_zero Include zeros (default: FALSE)

Method clone(): The objects of this class are cloneable with this method.

Usage:
FacetConfig$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

FacetResult

FacetResult Facet Result

Description

Result of facet aggregation

Public fields
field Field name
values List of FacetValue objects
total_count Total count

other_count Count of values not in top-N

FacetValue

Methods

Public methods:

¢ FacetResult$new()
* FacetResult$to_list()
e FacetResult$clone()

Method new(): Create a new FacetResult
Usage:

FacetResult$new(field, values, total_count, other_count = 0)

Arguments:

field Field name

values List of FacetValue objects
total_count Total count

other_count Other count

Method to_list(): Convert to list

Usage:
FacetResult$to_list()

Method clone(): The objects of this class are cloneable with this method.

Usage:
FacetResult$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

39

FacetValue Facet Value

Description

A single facet value with count

Public fields

value The facet value

count Number of occurrences

40

Methods

Public methods:

e FacetValue$new()
* FacetValue$clone()

Method new(): Create a new FacetValue

Usage:

FacetValue$new(value, count)

Arguments:

value The value

count The count

Method clone(): The objects of this class are cloneable with this method.

Usage:
FacetValue$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

FileCache

FileCache File Cache

Description

File-based persistent cache using RDS files

Super class

VectrixDB: :BaseCache -> FileCache

Methods

Public methods:

FileCache$new()
FileCache$get ()
FileCache$set()
FileCache$delete()
FileCache$exists()
FileCache$clear()
FileCache$size()
FileCache$cleanup_expired()
FileCache$clone()

Method new(): Create a new FileCache

FileCache

Usage:
FileCache$new(config = NULL)

Arguments:
config CacheConfig object

Method get(): Get value from cache

Usage:
FileCache$get (key)

Arguments:
key Cache key

Returns: Value or NULL

Method set(): Set value in cache

Usage:
FileCache$set(key, value, ttl = NULL)

Arguments:

key Cache key
value Value to cache
ttl Time to live

Method delete(): Delete key from cache

Usage:
FileCache$delete(key)

Arguments:
key Cache key

Returns: Logical success

Method exists(): Check if key exists

Usage:
FileCache$exists(key)

Arguments:
key Cache key

Returns: Logical

Method clear(): Clear cache
Usage:
FileCache$clear()

Method size(): Get cache size

Usage:
FileCache$size()

Returns: Integer

42

Method cleanup_expired(): Cleanup expired entries

Usage:
FileCache$cleanup_expired()

Returns: Integer count removed

Method clone(): The objects of this class are cloneable with this method.

Usage:
FileCache$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Filter

Filter Filter Class for Metadata Filtering

Description

Build metadata filters for search queries

Public fields

conditions List of filter conditions

Methods

Public methods:

e Filter$new()

e Filter$eq()

e Filter$ne()

* Filter$gt()

e Filter$lt()

e Filter$in_list()
* Filter$to_list()
e Filter$clone()

Method new(): Create a new Filter

Usage:
Filter$new(...)

Arguments:

. Named filter conditions

Method eq(): Add equality condition

Usage:
Filter$eq(field, value)

Filter

Arguments:
field Field name
value Value to match

Returns: Self for chaining

Method ne(): Add not-equal condition

Usage:
Filter$ne(field, value)

Arguments:
field Field name
value Value to exclude

Returns: Self for chaining

Method gt (): Add greater-than condition

Usage:
Filter$gt(field, value)

Arguments:
field Field name

value Threshold value

Returns: Self for chaining

Method 1t(): Add less-than condition

Usage:
Filter$lt(field, value)

Arguments:
field Field name
value Threshold value

Returns: Self for chaining

Method in_list(): Add in-list condition

Usage:
Filter$in_list(field, values)

Arguments:
field Field name
values Vector of values

Returns: Self for chaining

Method to_list(): Convert to list for API

Usage:
Filter$to_list()

Returns: List representation

43

44 GlobalSearcher

Method clone(): The objects of this class are cloneable with this method.
Usage:
Filter$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

GlobalSearcher Global Searcher

Description

Community-based graph search

Public fields

communities List of communities

k Number of communities

Methods

Public methods:

* GlobalSearcher$new()
¢ GlobalSearcher$search()
¢ GlobalSearcher$clone()

Method new(): Create a new GlobalSearcher

Usage:
GlobalSearcher$new(communities, k = 5)

Arguments:
communities List of Community objects
k Number of communities

Method search(): Search communities

Usage:
GlobalSearcher$search(query)

Arguments:
query Query string
Returns: GlobalSearchResult
Method clone(): The objects of this class are cloneable with this method.
Usage:
GlobalSearcher$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

GlobalSearchResult

45

GlobalSearchResult Global Search Result

Description

Result from global community search

Public fields

communities Matching communities
summaries Community summaries
context Combined context

score Relevance score

Methods

Public methods:

¢ GlobalSearchResult$new()
¢ GlobalSearchResult$clone()

Method new(): Create new GlobalSearchResult

Usage:

GlobalSearchResult$new(
communities = list(),
summaries = character(9),
context = NULL,
score = 0@

)

Arguments:

communities Communities

summaries Summaries

context Context

score Score

Method clone(): The objects of this class are cloneable with this method.

Usage:
GlobalSearchResult$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

46 GraphRAGConfig

graphrag VectrixDB GraphRAG Module

Description

Native GraphRAG implementation for VectrixDB

Features:

* Entity and relationship extraction
* Hierarchical community detection
* Local, global, and hybrid search strategies

* Incremental graph updates

GraphRAGConfig GraphRAG Configuration

Description

Configuration for VectrixDB’s GraphRAG implementation

Public fields
enabled Whether GraphRAG is enabled

chunk_size Target tokens per chunk
chunk_overlap Overlapping tokens
chunk_by_sentence Preserve sentence boundaries
extractor Extraction method

nlp_model NLP model name

1Im_provider LLM provider

1Im_model Model name

11m_api_key API key

11m_endpoint Custom endpoint
11m_temperature Temperature

1Im_max_tokens Max tokens
max_community_levels Max hierarchy depth
min_community_size Min entities per community
relationship_threshold Min relationship strength
deduplicate_entities Merge similar entities

entity_similarity_threshold Similarity for dedup

GraphRAGConfig

search_type Default search strategy
local_search_k Seed entities for local search
global_search_k Communities for global search
traversal_depth Max hops
include_relationships Include relationship context
include_community_context Include community summaries
enable_incremental Incremental updates
batch_size Chunks per batch

use_cache Cache embeddings

cache_ttl Cache TTL seconds

entity_types Types to extract

relationship_types Types to extract

Methods

Public methods:
¢ GraphRAGConfig$new()
* GraphRAGConfig$with_openai()
* GraphRAGConfig$with_ollama()
¢ GraphRAGConfig$clone()

Method new(): Create a new GraphRAGConfig
Usage:
GraphRAGConfig$new(enabled = FALSE, ...)
Arguments:

enabled Enable GraphRAG
. Additional configuration options

Method with_openai(): Configure for OpenAl
Usage:
GraphRAGConfig$with_openai(model = "gpt-4o0-mini”, api_key = NULL)
Arguments:
model Model name
api_key API key
Returns: Self

Method with_ollama(): Configure for Ollama

Usage:
GraphRAGConfig$with_ollama(
model = "llama3.2",
endpoint = "http://localhost:11434"

)

48 GraphRAGPipeline

Arguments:
model Model name
endpoint Endpoint URL

Returns: Self

Method clone(): The objects of this class are cloneable with this method.
Usage:
GraphRAGConfig$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Not run:
config <- GraphRAGConfig$new(enabled = TRUE)
db <- Vectrix$new("knowledge_base”, graphrag_config = config)

End(Not run)

GraphRAGPipeline GraphRAG Pipeline

Description

Complete GraphRAG processing pipeline

Public fields

config GraphRAGConfig
graph KnowledgeGraph

communities Detected communities

Methods

Public methods:

¢ GraphRAGPipeline$new()

e GraphRAGPipeline$process()
¢ GraphRAGPipeline$search()
¢ GraphRAGPipeline$stats()

* GraphRAGPipeline$clone()

Method new(): Create a new GraphRAGPipeline
Usage:

GraphSearchType

GraphRAGPipeline$new(config = NULL)

Arguments:
config GraphRAGConfig

Method process(): Process documents

Usage:
GraphRAGPipeline$process(texts, document_ids = NULL)

Arguments:
texts Character vector of documents
document_ids Document IDs

Returns: Self

Method search(): Search the graph

Usage:
GraphRAGPipeline$search(query, search_type = NULL)

Arguments:
query Query string
search_type "local", "global", or "hybrid"

Returns: Search result

Method stats(): Get statistics

Usage:
GraphRAGPipeline$stats()

Returns: Named list

Method clone(): The objects of this class are cloneable with this method.

Usage:

GraphRAGPipeline$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

49

GraphSearchType Graph Search Types

Description

Graph Search Types

Usage
GraphSearchType

Format

An object of class 1ist of length 3.

50 HNSWIndex

hnsw VectrixDB HNSW Index

Description

Hierarchical Navigable Small World graph for fast approximate nearest neighbor search

Uses ReppAnnoy for high-performance ANN search. Falls back to brute-force search if RcppAnnoy
is not available.

HNSWIndex HNSW Index

Description

High-performance approximate nearest neighbor index

Public fields

dimension Vector dimension
metric Distance metric
n_trees Number of trees (for Annoy)

search_k Search parameter

Methods

Public methods:

* HNSWIndex$new()

¢ HNSWIndex$add_items()
* HNSWIndex$build()

* HNSWIndex$search()

* HNSWIndex$get_vector()
¢ HNSWIndex$get_ids()

¢ HNSWIndex$size()

* HNSWIndex$remove_items()
* HNSWIndex$clear()

¢ HNSWIndex$save()

e HNSWIndex$load()

* HNSWIndex$clone()

Method new(): Create a new HNSWIndex
Usage:
HNSWIndex$new(dimension, metric = "angular"”, n_trees = 50, search_k = -1)

HNSWlndex

Arguments:

dimension Vector dimension

"non non "

metric Distance metric: "angular”, "euclidean", "manhattan”, "dot
n_trees Number of trees for index (higher = more accuracy)
search_k Search parameter (higher = more accuracy, -1 = auto)

Method add_items(): Add items to the index

Usage:
HNSWIndex$add_items(ids, vectors)

Arguments:
ids Character vector of IDs
vectors Matrix of vectors (rows = items)

Returns: Self

Method build(): Build the index (required before searching)

Usage:
HNSWIndex$build()

Returns: Self

Method search(): Search for nearest neighbors

Usage:
HNSWIndex$search(query, k = 10, include_distances = TRUE)

Arguments:

query Query vector

k Number of neighbors
include_distances Return distances

Returns: Data frame with id, distance columns

Method get_vector(): Get vector by ID

Usage:
HNSWIndex$get_vector(id)

Arguments:
id Item ID

Returns: Vector or NULL

Method get_ids(): Get all IDs

Usage:
HNSWIndex$get_ids()

Returns: Character vector

Method size(): Getitem count
Usage:

52

HNSWIndex$size()

Returns: Integer

Method remove_items(): Remove items from index

Usage:
HNSWIndex$remove_items(ids)

Arguments:

ids IDs to remove

Returns: Self

Method clear(): Clear the index

Usage:
HNSWIndex$clear ()

Returns: Self

Method save(): Save index to file

Usage:
HNSWIndex$save(path)

Arguments:
path File path

Method load(): Load index from file

Usage:
HNSWIndex$load(path)

Arguments:
path File path

Returns: Self

Method clone(): The objects of this class are cloneable with this method.

Usage:
HNSWIndex$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Examples

Not run:
Create index
index <- HNSWIndex$new(dimension = 128, metric = "angular")

Add vectors
index$add_items(ids = c("a", "b", "c"),

vectors = matrix(rnorm(384), nrow = 3))

HNSWlIndex

KeywordAnalyzer

Search
results <- index$search(query = rnorm(128), k = 5)

End(Not run)

53

KeywordAnalyzer Keyword Analyzer

Description

Treats entire input as single token

Super class

VectrixDB: :TextAnalyzer -> KeywordAnalyzer

Methods

Public methods:

¢ KeywordAnalyzer$analyze()
* KeywordAnalyzer$clone()

Method analyze(): Analyze text as single keyword

Usage:
KeywordAnalyzer$analyze(text)

Arguments:

text Input text

Returns: Single-element character vector

Method clone(): The objects of this class are cloneable with this method.

Usage:
KeywordAnalyzer$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

54

KnowledgeGraph

KnowledgeGraph Knowledge Graph

Description

Graph storage for entities and relationships

Public fields

name Graph name

Methods

Public methods:

KnowledgeGraph$new()
KnowledgeGraph$add_entity()
KnowledgeGraph$add_relationship()
KnowledgeGraph$get_entity()
KnowledgeGraph$get_all_entities()
KnowledgeGraph$get_all_relationships()
KnowledgeGraph$get_neighbors()
KnowledgeGraph$traverse()
KnowledgeGraph$entity_count()
KnowledgeGraph$relationship_count()
KnowledgeGraph$search_entities()
KnowledgeGraph$clone()

Method new(): Create a new KnowledgeGraph

Usage:

KnowledgeGraph$new(name = "default")

Arguments:

name Graph name

Method add_entity(): Add an entity

Usage:

KnowledgeGraph$add_entity(entity)

Arguments:

entity Entity object

Method add_relationship(): Add a relationship

Usage:

KnowledgeGraph$add_relationship(relationship)

KnowledgeGraph

Arguments:
relationship Relationship object

Method get_entity(): Get entity by ID

Usage:
KnowledgeGraph$get_entity(entity_id)

Arguments:
entity_id Entity ID
Returns: Entity or NULL

Method get_all_entities(): Get all entities

Usage:
KnowledgeGraph$get_all_entities()

Returns: List of Entity objects

Method get_all_relationships(): Get all relationships

Usage:
KnowledgeGraph$get_all_relationships()

Returns: List of Relationship objects

Method get_neighbors(): Get neighbors of an entity

Usage:
KnowledgeGraph$get_neighbors(entity_id, direction = "both")

Arguments:
entity_id Entity ID
direction "out", "in", or "both"

Returns: List of Entity objects

Method traverse(): Traverse graph from seed entities

Usage:
KnowledgeGraph$traverse(seed_ids, max_depth = 2)

Arguments:
seed_ids Starting entity IDs
max_depth Maximum depth

Returns: SubGraph object

Method entity_count(): Get entity count

Usage:
KnowledgeGraph$entity_count()

Returns: Integer

Method relationship_count(): Get relationship count

55

56 LatelnteractionEmbedder

Usage:
KnowledgeGraph$relationship_count()

Returns: Integer

Method search_entities(): Search entities by name

Usage:
KnowledgeGraph$search_entities(query, limit = 10)

Arguments:

query Query string
limit Max results

Returns: List of Entity objects

Method clone(): The objects of this class are cloneable with this method.
Usage:
KnowledgeGraph$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

LateInteractionEmbedder
Late Interaction Embedder (Simplified ColBERT-style)

Description

Token-level embeddings for late interaction scoring

Public fields

dimension Token embedding dimension

language Language setting ("en" or "ml")

Methods
Public methods:

e LateInteractionEmbedder$new()

e LateInteractionEmbedder$embed()
e LateInteractionEmbedder$score()
e LateInteractionEmbedder$clone()

Method new(): Create a new LateInteractionEmbedder

Usage:
LateInteractionEmbedder$new(dimension = 64, language = "en")

Arguments:

LILMProvider 57

dimension Embedding dimension per token
language Language behavior ("en" = ASCII-focused, "ml" = Unicode-aware)

Method embed(): Embed texts to token-level embeddings

Usage:
LateInteractionEmbedder$embed(texts)

Arguments:

texts Character vector of texts

Returns: List of matrices (each matrix is token embeddings for a document)

Method score(): Compute late interaction (MaxSim) score

Usage:
LateInteractionEmbedder$score(query_embeddings, doc_embeddings)

Arguments:
query_embeddings Query token embeddings matrix
doc_embeddings Document token embeddings matrix

Returns: Numeric score

Method clone(): The objects of this class are cloneable with this method.

Usage:
LateInteractionEmbedder$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

LLMProvider LLM Provider Types

Description

LLM Provider Types

Usage

LLMProvider

Format

An object of class 1ist of length 4.

58

load_word_vectors

load_hnsw_index

Load HNSW Index

Description

Load saved index from file

Usage

load_hnsw_index(path)

Arguments

path File path
Value

HNSWIndex object

load_word_vectors

Load word vectors into memory

Description

Loads pre-trained word vectors from a file

Usage

load_word_vectors(path, max_words = NULL, normalize = TRUE)

Arguments

path
max_words

normalize

Value

Path to word vectors file (GloVe .txt or word2vec .bin)
Maximum number of words to load (NULL for all)

Normalize vectors to unit length

WordVectors object

LocalSearcher

59

LocalSearcher Local Searcher

Description

Entity-based graph search

Public fields
graph Knowledge graph
k Number of seed entities

traversal_depth Max hops

Methods
Public methods:

e LocalSearcher$new()
¢ LocalSearcher$search()
e LocalSearchers$clone()

Method new(): Create a new LocalSearcher

Usage:
LocalSearcher$new(graph, k = 10, traversal_depth = 2)

Arguments:

graph KnowledgeGraph

k Seed entities
traversal_depth Max depth

Method search(): Search the graph

Usage:
LocalSearcher$search(query)

Arguments:
query Query string
Returns: LocalSearchResult

Method clone(): The objects of this class are cloneable with this method.

Usage:
LocalSearcher$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

60

LocalSearchResult

LocalSearchResult Local Search Result

Description

Result from local graph search

Public fields

entities Matching entities
relationships Related relationships
subgraph Traversed subgraph
context Combined context text

score Relevance score

Methods
Public methods:

* LocalSearchResult$new()
e LocalSearchResult$clone()

Method new(): Create new LocalSearchResult

Usage:

LocalSearchResult$new(
entities = list(),
relationships = list(),
subgraph = NULL,
context = NULL,
score = 0

)

Arguments:

entities Entities

relationships Relationships

subgraph SubGraph

context Context

score Score

Method clone(): The objects of this class are cloneable with this method.
Usage:
LocalSearchResult$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

MemoryCache 61

MemoryCache Memory Cache

Description

In-memory LRU cache with TTL support

Ultra-low latency, limited by available RAM. Best for hot data, session data, frequently accessed
vectors.

Super class

VectrixDB: :BaseCache -> MemoryCache

Methods

Public methods:

¢ MemoryCache$new()

e MemoryCache$get ()

* MemoryCache$set()

* MemoryCache$delete()

¢ MemoryCache$exists()

* MemoryCache$clear()

* MemoryCache$size()

e MemoryCache$cleanup_expired()
¢ MemoryCache$clone()

Method new(): Create a new MemoryCache

Usage:
MemoryCache$new(config = NULL)

Arguments:

config CacheConfig object

Method get(): Get value from cache

Usage:
MemoryCache$get (key)

Arguments:

key Cache key
Returns: Value or NULL

Method set(): Set value in cache

Usage:
MemoryCache$set(key, value, ttl = NULL)

Arguments:

key Cache key
value Value to cache
ttl Time to live

Method delete(): Delete key from cache

Usage:
MemoryCache$delete(key)

Arguments:

key Cache key

Returns: Logical success

Method exists(): Check if key exists

Usage:
MemoryCache$exists(key)

Arguments:

key Cache key

Returns: Logical

Method clear(): Clear cache

Usage:
MemoryCache$clear()

Method size(): Get cache size

Usage:
MemoryCache$size()

Returns: Integer

Method cleanup_expired(): Cleanup expired entries

Usage:
MemoryCache$cleanup_expired()

Returns: Integer count removed

Method clone(): The objects of this class are cloneable with this method.

Usage:
MemoryCache$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

MemoryCache

MMRReranker

63

MMRReranker Maximal Marginal Relevance (MMR) Reranker

Description

Reranks for diversity using MMR algorithm

Public fields

lambda Balance between relevance and diversity (0-1)

Methods

Public methods:

¢ MMRReranker$new()
¢ MMRReranker$rerank()
* MMRReranker$clone()

Method new(): Create a new MMRReranker
Usage:
MMRReranker$new(lambda = 0.7)
Arguments:

lambda Relevance vs diversity tradeoff (higher = more relevance)

Method rerank(): Rerank for diversity
Usage:
MMRRerankers$rerank(query_vector, doc_vectors, doc_ids, scores, limit = 10)
Arguments:
query_vector Query embedding
doc_vectors Matrix of document embeddings
doc_ids Vector of document IDs
scores Original relevance scores

limit Number of results

Returns: Data frame with reranked results

Method clone(): The objects of this class are cloneable with this method.

Usage:
MMRReranker$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

64

NoCache

NoCache No-Op Cache

Description

Disabled cache (no caching)

Super class

VectrixDB: :BaseCache -> NoCache

Methods

Public methods:

* NoCache$get ()

* NoCache$set ()

* NoCache$delete()
* NoCache$exists()
* NoCache$clear()
* NoCache$size()

* NoCache$clone()

Method get(): Get value from cache (always returns NULL)

Usage:
NoCache$get (key)

Arguments:

key Cache key
Returns: NULL

Method set(): Set cache value (no-op)

Usage:
NoCache$set (key, value, ttl = NULL)

Arguments:

key Cache key

value Value to cache

ttl Time-to-live in seconds (ignored)

Returns: Invisibly returns NULL

Method delete(): Delete key from cache (always FALSE)

Usage:
NoCache$delete(key)

Arguments:

parse_acl

key Cache key
Returns: FALSE

Method exists(): Check if key exists (always FALSE)

Usage:
NoCache$exists(key)

Arguments:
key Cache key
Returns: FALSE

Method clear(): Clear cache (no-op)

Usage:
NoCache$clear()

Returns: Invisibly returns NULL

Method size(): Get cache size (always 0)

Usage:
NoCache$size()

Returns: Integer zero

Method clone(): The objects of this class are cloneable with this method.
Usage:
NoCache$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

parse_acl Parse ACL String

Description

Parse ACL string like "user:alice’ or *group:engineering’

Usage

parse_acl(acl_string)

Arguments

acl_string ACL string

Value

ACLPrincipal object

66 RegexExtractor
quick_search Quick search - Index texts and search immediately
Description
Quick search - Index texts and search immediately
Usage
quick_search(texts, query, limit = 5)
Arguments
texts Character vector of texts to index
query Search query
limit Number of results
Value
Results object
Examples
Not run:
results <- quick_search(
texts = c("Python is great”, "Java is verbose”, "Rust is fast"),
query = "programming language”
)
print(results$top()$text)
End(Not run)
RegexExtractor Regex Entity Extractor
Description
Simple regex-based entity extractor (no external dependencies)
Public fields

entity_types Entity types to extract

Relationship

Methods

Public methods:

* RegexExtractor$new()
* RegexExtractor$extract()
* RegexExtractor$clone()

Method new(): Create a new RegexExtractor

Usage:
RegexExtractor$new(entity_types = NULL)

Arguments:
entity_types Types to extract

Method extract(): Extract entities from text
Usage:
RegexExtractor$extract(text, chunk_id = NULL)
Arguments:
text Text to extract from
chunk_id Chunk ID

Returns: ExtractionResult

Method clone(): The objects of this class are cloneable with this method.

Usage:

RegexExtractor$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

67

Relationship Relationship

Description

A relationship between entities

Public fields

id Unique identifier

source_id Source entity ID
target_id Target entity ID

type Relationship type
description Description
weight Relationship weight
source_chunks Source chunk IDs

metadata Additional metadata

68 reranker

Methods

Public methods:

¢ Relationship$new()
* Relationship$to_list()
* Relationship$clone()

Method new(): Create a new Relationship

Usage:
Relationship$new(
source_id,
target_id,
type,
description = NULL,
weight = 1,
source_chunks = NULL,
metadata = NULL

)

Arguments:

source_id Source entity
target_id Target entity
type Relationship type
description Description
weight Weight
source_chunks Sources
metadata Metadata

Method to_list(): Convert to list
Usage:
Relationship$to_list()
Method clone(): The objects of this class are cloneable with this method.
Usage:
Relationship$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

reranker Advanced Reranking Module

Description

Learned weight reranking with BM25 + semantic fusion

RerankerEmbedder 69

RerankerEmbedder Reranker (Cross-Encoder Style Scoring)

Description

Reranks results using term overlap and semantic similarity

Public fields

language Language setting ("en" or "ml")

Methods
Public methods:

¢ RerankerEmbedder$new()
¢ RerankerEmbedder$score()
¢ RerankerEmbedder$clone()
Method new(): Create a new RerankerEmbedder

Usage:
RerankerEmbedder$new(language = "en")

Arguments:
language Language behavior ("en" = English stopwords, "ml" = Unicode tokens)

Method score(): Score query-document pairs

Usage:
RerankerEmbedder$score(query, documents)

Arguments:

query Query text
documents Character vector of document texts

Returns: Numeric vector of scores (0-1)

Method clone(): The objects of this class are cloneable with this method.

Usage:
RerankerEmbedder$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

70

Result

Result Single Search Result

Description

Represents a single search result with id, text, score, and metadata

Public fields

id Document ID
text Document text
score Relevance score

metadata Document metadata

Methods

Public methods:
* Result$new()
* Result$print()
* Result$clone()

Method new(): Create a new Result object
Usage:
Result$new(id, text, score, metadata = list())
Arguments:
id Document ID
text Document text
score Relevance score
metadata Optional metadata list

Method print(): Print result summary

Usage:
Result$print()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Result$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Results

71

Results Search Results Collection

Description

Collection of search results with convenient accessors

Public fields

items List of Result objects
query Search query
mode Search mode

time_ms Execution time in ms

Methods

Public methods:

* Results$new()

* Results$length()
* Results$texts()
* Results$ids()

e Results$scores()
* Results$top()

* Results$get()

* Results$foreach()
* Results$print()
e Results$clone()

Method new(): Create a new Results object
Usage:
Results$new(items = list(), query =

Arguments:

items List of Result objects

query Search query string

mode Search mode used

time_ms Execution time in milliseconds

Method length(): Get number of results
Usage:
Results$length()

Method texts(): Get all result texts
Usage:

nn

, mode = "hybrid", time_ms

)

72

Results$texts()

Returns: Character vector of texts

Method ids(): Get all result IDs

Usage:
Results$ids()

Returns: Character vector of IDs

Method scores(): Get all scores

Usage:
Results$scores()

Returns: Numeric vector of scores

Method top(): Get top result

Usage:
Results$top()

Returns: Result object or NULL if empty

Method get(): Get result by index

Usage:
Results$get (i)

Arguments:

i Index

Returns: Result object

Method foreach(): Iterate over results

Usage:
Results$foreach(fn)

Arguments:

fn Function to apply to each result

Method print(): Print results summary

Usage:
Results$print()

Method clone(): The objects of this class are cloneable with this method.

Usage:

Results$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Results

SearchMode

73

SearchMode Search Mode Enumeration

Description

Available search modes for VectrixDB

Usage

SearchMode

Format

An object of class 1ist of length 5.

SentenceEmbedder Sentence Embedder using Word Vectors

Description

Creates sentence embeddings by averaging word vectors with IDF weighting

Public fields

dim Embedding dimension

vocab_size Vocabulary size

Methods

Public methods:

SentenceEmbedder$new()
SentenceEmbedder$fit()
SentenceEmbedder$embed()
SentenceEmbedder$get_word_vector()
SentenceEmbedder$has_word()
SentenceEmbedder$most_similar()
SentenceEmbedder$clone()

Method new(): Create a new SentenceEmbedder

Usage:

SentenceEmbedder$new(word_vectors, use_idf = TRUE, smooth_idf = 1)

Arguments:

word_vectors WordVectors object from load_word_vectors()

74

use_idf Use IDF weighting (recommended)
smooth_idf Smoothing for IDF

Method fit(): Fit IDF weights on a corpus

Usage:
SentenceEmbedder$fit(texts)
Arguments:

texts Character vector of texts

Method embed(): Embed texts to sentence vectors

Usage:
SentenceEmbedder$embed(texts)

Arguments:
texts Character vector of texts

Returns: Matrix of embeddings (rows are sentences)

Method get_word_vector(): Get word vector for a single word

Usage:
SentenceEmbedder$get_word_vector(word)
Arguments:

word Word to look up

Returns: Numeric vector or NULL if not found

Method has_word(): Check if word is in vocabulary

Usage:
SentenceEmbedder$has_word(word)

Arguments:
word Word to check

Returns: Logical

Method most_similar(): Find most similar words
Usage:
SentenceEmbedder$most_similar(word, n = 10)
Arguments:
word Query word
n Number of results
Returns: Data frame with word and similarity

Method clone(): The objects of this class are cloneable with this method.

Usage:
SentenceEmbedder$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

SentenceEmbedder

server

75

server VectrixDB Server Functions

Description

REST API and dashboard server for VectrixDB

set_cli_config Set CLI Config

Description

Set CLI Config

Usage

set_cli_config(config)

Arguments
config CLIConfig object
SimpleStemmer Simple Stemmer
Description

Simple suffix-stripping stemmer (no external dependencies)

Public fields

suffixes List of suffixes to remove

Methods

Public methods:

e SimpleStemmer$stem()
e SimpleStemmer$stem_words()
e SimpleStemmer$clone()

Method stem(): Stem a word
Usage:
SimpleStemmer$stem(word)

76 SparseEmbedder
Arguments:
word Word to stem
Returns: Stemmed word
Method stem_words(): Stem multiple words
Usage:
SimpleStemmer$stem_words(words)
Arguments:
words Character vector
Returns: Stemmed words
Method clone(): The objects of this class are cloneable with this method.
Usage:
SimpleStemmer$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
SparseEmbedder Sparse Embedder (BM25/TF-IDF)
Description

Generates sparse BM25 embeddings for keyword search

Public fields

vocab Vocabulary

language Language setting ("en" or "ml")

Methods

Public methods:
e SparseEmbedder$new()
e SparseEmbedder$fit()
¢ SparseEmbedder$embed()
* SparseEmbedder$query_terms()
* SparseEmbedder$clone()

Method new(): Create a new SparseEmbedder

Usage:
SparseEmbedder$new(language = "en")

Arguments:

storage

language Language behavior ("en" = ASCII-focused, "ml" = Unicode-aware)

Method fit(): Fitthe embedder on a corpus

Usage:
SparseEmbedder$fit(texts)

Arguments:
texts Character vector of texts

Method embed(): Embed texts to sparse vectors

Usage:
SparseEmbedder$embed(texts)

Arguments:

texts Character vector of texts

Returns: Sparse matrix of BM25 scores

Method query_terms(): Get term scores for a query

Usage:
SparseEmbedders$query_terms(query)

Arguments:
query Query text

Returns: Named vector of term scores

Method clone(): The objects of this class are cloneable with this method.

Usage:
SparseEmbedder$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

storage VectrixDB Storage Classes

Description

Storage backends for VectrixDB

78 SubGraph

SubGraph SubGraph

Description

A subset of a knowledge graph

Public fields

entities Entities in subgraph

relationships Relationships in subgraph

Methods

Public methods:

e SubGraph$new()
* SubGraph$to_list()
* SubGraph$clone()

Method new(): Create a new SubGraph

Usage:
SubGraph$new(entities = list(), relationships = list())

Arguments:
entities Entities
relationships Relationships

Method to_list(): Convert to list
Usage:
SubGraph$to_list()
Method clone(): The objects of this class are cloneable with this method.

Usage:
SubGraph$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

TextAnalyzer

79

TextAnalyzer Text Analyzer

Description

Text analyzer for search indexing

Provides text processing pipelines:

» Tokenization

» Lowercasing

* Stopword removal
e Stemming

* Synonym expansion

Public fields

lowercase Convert to lowercase
remove_stopwords Remove stopwords
stopwords Set of stopwords

stemmer Stemmer object

synonyms Synonym dictionary
min_token_length Minimum token length
max_token_length Maximum token length
token_pattern Regex pattern for tokens

Methods

Public methods:
e TextAnalyzer$new()
* TextAnalyzer$analyze()
* TextAnalyzer$analyze_query()
e TextAnalyzer$clone()

Method new(): Create a new TextAnalyzer

Usage:

TextAnalyzer$new(
lowercase = TRUE,
remove_stopwords = FALSE,
stopwords = NULL,
use_stemmer = FALSE,
synonyms = NULL,
min_token_length = 1,
max_token_length = 100,
token_pattern = "[a-zA-Z0-9]+"

80 TextAnalyzer

Arguments:

lowercase Lowercase text (default: TRUE)

remove_stopwords Remove stopwords (default: FALSE)
stopwords Custom stopwords (default: ENGLISH_STOPWORDS)
use_stemmer Use stemming (default: FALSE)

synonyms Named list of synonyms

min_token_length Min length (default: 1)

max_token_length Max length (default: 100)

token_pattern Regex pattern

Method analyze(): Analyze text and return tokens

Usage:
TextAnalyzer$analyze(text)

Arguments:

text Input text

Returns: Character vector of tokens

Method analyze_query(): Analyze a query string

Usage:
TextAnalyzer$analyze_query(query)

Arguments:

query Query text

Returns: Character vector of tokens

Method clone(): The objects of this class are cloneable with this method.

Usage:
TextAnalyzer$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Not run:

analyzer <- TextAnalyzer$english()

tokens <- analyzer$analyze("The quick brown foxes are jumping")
c("quick”, "brown”, "fox", "jump")

End(Not run)

TextUnit

81

TextUnit Text Unit

Description

A chunk of text from a document

Public fields

id Unique identifier

text Text content

document_id Source document
chunk_index Index in document
start_char Start position
end_char End position

metadata Additional metadata

Methods

Public methods:

e TextUnit$new()
e TextUnit$clone()

Method new(): Create a new TextUnit

Usage:
TextUnit$new(
id,
text,
document_id = NULL,
chunk_index = 0,
start_char = 0,
end_char = 0,
metadata = NULL
)
Arguments:
id Unique ID
text Content
document_id Source doc
chunk_index Index
start_char Start
end_char End
metadata Metadata

82 text_analyzer_keyword

Method clone(): The objects of this class are cloneable with this method.

Usage:
TextUnit$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

text_analyzer_english Create English Text Analyzer

Description

English analyzer with stemming and stopwords

Usage

text_analyzer_english()

Value

TextAnalyzer object

text_analyzer_keyword Create Keyword Text Analyzer

Description

No tokenization - treat input as single token

Usage

text_analyzer_keyword()

Value

TextAnalyzer object

text_analyzer_simple

&3

text_analyzer_simple Create Simple Text Analyzer

Description

Lowercase + letter-only tokenization

Usage

text_analyzer_simple()

Value

TextAnalyzer object

text_analyzer_standard
Create Standard Text Analyzer

Description

Lowercase + basic tokenization

Usage

text_analyzer_standard()

Value

TextAnalyzer object

vdb_add Add Documents

Description

Add documents to a collection

Usage

vdb_add(db, texts, metadata = NULL, ids = NULL)

84

Arguments
db Vectrix object or collection name
texts Character vector of texts
metadata Optional metadata
ids Optional IDs

Value

Vectrix object

Examples

Not run:
vdb_add(db, c("Document 1", "Document 2"))
vdb_add("my_docs"”, c("Another doc"))

End(Not run)

vdb_add_dir

vdb_add_dir Batch Add from Directory

Description

Add all text files from a directory

Usage

vdb_add_dir(db, dir_path, pattern = "\\.txt$", recursive = TRUE)

Arguments
db Vectrix object or collection name
dir_path Directory path
pattern File pattern (default: "*.txt")
recursive Search subdirectories

Value

Vectrix object

Examples

Not run:
vdb_add_dir(db, "./documents/")

End(Not run)

vdb_create 85

vdb_create Create Collection

Description

Create a new VectrixDB collection

Usage

vdb_create(name, model = "tfidf", dimension = NULL, data_dir = NULL)

Arguments
name Collection name
model Embedding model
dimension Vector dimension
data_dir Data directory
Value

Vectrix object

Examples

Not run:
db <- vdb_create("my_docs")

End(Not run)

vdb_dashboard Launch VectrixDB Dashboard

Description

Start the VectrixDB API server and mount the HTML dashboard at /dashboard.

Usage

vdb_dashboard(
db = NULL,
data_path = NULL,
port = 7377,
host = "127.0.0.1",
launch.browser = TRUE,
api_key = NULL

86

Arguments

db Optional Vectrix object.

data_path Path to vector database directory.

port Port number (default: 7377).

host Host address (default: "127.0.0.1").

launch.browser Whether to open browser on start.

api_key Optional API key for authenticated write operations.
Value

Invisibly returns server object from vectrix_serve().

vdb_delete

vdb_dashboard_simple Launch Simple Dashboard

Description

Convenience wrapper around vdb_dashboard() using db$path.

Usage
vdb_dashboard_simple(db)

Arguments

db Vectrix object.

Value

Invisibly returns server object from vdb_dashboard().

vdb_delete Delete Collection

Description

Delete a collection

Usage

vdb_delete(name, data_dir = NULL, confirm = TRUE)

vdb_delete_docs

Arguments
name Collection name
data_dir Data directory
confirm Require confirmation
Value

Logical success

Examples

Not run:
vdb_delete("my_docs")

End(Not run)

87

vdb_delete_docs Delete Documents

Description

Delete documents by ID

Usage

vdb_delete_docs(db, ids)

Arguments
db Vectrix object or collection name
ids Document ID(s)

Value

Vectrix object

88

vdb_get

vdb_export Export Collection

Description

Export collection to JSON file

Usage
vdb_export(db, path)

Arguments
db Vectrix object or collection name
path Output file path

Value

Logical success

Examples

Not run:
vdb_export(db, "backup.json")

End(Not run)

vdb_get Get Document

Description

Get document by ID

Usage
vdb_get(db, ids)

Arguments
db Vectrix object or collection name
ids Document ID(s)

Value

List of Result objects

vdb_import

vdb_import Import from File

Description

Import documents from text file

Usage

vdb_import(db, path, separator = "\n")

Arguments
db Vectrix object or collection name
path Input file path
separator Line separator for documents
Value

Vectrix object

Examples

Not run:
vdb_import(db, "documents.txt")

End(Not run)

vdb_info Collection Info

Description

Get collection information

Usage
vdb_info(db)

Arguments

db Vectrix object or collection name

Value

Named list of info

90

Examples

Not run:
vdb_info(db)
vdb_info("my_docs")

End(Not run)

vdb_list

vdb_interactive Start Interactive CLI

Description

Start an interactive VectrixDB session

Usage

vdb_interactive(collection = NULL)

Arguments

collection Default collection name

Examples

Not run:
vdb_interactive()

End(Not run)

vdb_list List Collections

Description

List all VectrixDB collections in the data directory

Usage
vdb_list(data_dir = NULL)

Arguments

data_dir Data directory path

Value

Character vector of collection names

vdb_open

Examples

Not run:
vdb_list()

End(Not run)

vdb_open Open Collection

Description

Open an existing collection

Usage

vdb_open(name, data_dir = NULL)

Arguments
name Collection name
data_dir Data directory
Value

Vectrix object

Examples

Not run:
db <- vdb_open("my_docs")

End(Not run)

vdb_search Search Collection

Description

Search a collection

Usage

vdb_search(db, query, limit = 10, mode = "hybrid"”, show = TRUE)

92 vdb_stats

Arguments
db Vectrix object or collection name
query Search query
limit Number of results
mode Search mode: "dense", "sparse”, "hybrid", "ultimate"
show Print results
Value

Results object

Examples
Not run:
results <- vdb_search(db, "machine learning”)
results <- vdb_search("my_docs”, "AI", limit = 5)

End(Not run)

vdb_stats Collection Statistics

Description

Get detailed statistics

Usage

vdb_stats(db)

Arguments

db Vectrix object or collection name

Value

Named list of stats

VectorCache 93

VectorCache Vector Cache

Description

Specialized cache for vector search results

Features:

* Query result caching
* Vector embedding caching

e Automatic cache invalidation

Public fields
prefix Cache key prefix

Methods

Public methods:
¢ VectorCache$new()
* VectorCache$get_search_results()
* VectorCache$set_search_results()
* VectorCache$get_vector()
* VectorCache$set_vector()
e VectorCache$invalidate_vector()
* VectorCache$stats()
¢ VectorCache$clone()

Method new(): Create a new VectorCache

Usage:

[

VectorCache$new(cache, prefix = "vec:")

Arguments:
cache Base cache backend
prefix Key prefix (default: "vec:"

Method get_search_results(): Get cached search results
Usage:
VectorCache$get_search_results(collection, query, filter = NULL, limit = 10)
Arguments:
collection Collection name
query Query vector
filter Filter conditions
limit Result limit

Returns: Cached results or NULL

Method set_search_results(): Cache search results

Usage:
VectorCache$set_search_results(
collection,
query,
results,
filter = NULL,
limit = 10,
ttl = 300
)
Arguments:
collection Collection name
query Query vector
results Search results
filter Filter conditions
limit Result limit
ttl Time to live (default: 300)

Method get_vector(): Get cached vector

Usage:
VectorCache$get_vector(collection, vector_id)

Arguments:
collection Collection name
vector_id Vector ID

Returns: Cached vector data or NULL

Method set_vector(): Cache vector data

Usage:

VectorCache$set_vector(collection, vector_id, data, ttl = 3600)

Arguments:

collection Collection name
vector_id Vector ID

data Vector data

ttl Time to live (default: 3600)

Method invalidate_vector(): Invalidate cached vector
Usage:
VectorCache$invalidate_vector(collection, vector_id)
Arguments:

collection Collection name
vector_id Vector ID

VectorCache

Vectrix

Method stats(): Get cache statistics
Usage:
VectorCache$stats()

Returns: CacheStats object

Method clone(): The objects of this class are cloneable with this method.
Usage:
VectorCache$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

95

Vectrix VectrixDB Easy API - The Simplest Vector Database

Description

Zero config. Text in, results out. One line for everything.

Public fields

name Collection name

path Storage path
dimension Vector dimension
model_name Model identifier
model_type Model type
language Language setting

tier Storage tier

Methods
Public methods:

* Vectrix$new()

e Vectrix$add()

e Vectrix$set_language()
* Vectrix$search()
e Vectrix$delete()
* Vectrix$clear()

e Vectrix$count()

e Vectrix$get()

* Vectrix$similar()
e Vectrix$close()

e Vectrix$print()

Vectrix

e Vectrix$clone()

Method new(): Create or open a VectrixDB collection

Usage:

Vectrix$new(
name = "default”,
path = NULL,
model = NULL,

dimension = NULL,
embed_fn = NULL,
model_path = NULL,
language = NULL,
tier = "dense",
auto_download = TRUE

)

Arguments:

name Collection name

path Storage path. Defaults to a session temp directory.

model Embedding model: "tfidf" (default), "glove-50", "glove-100", "glove-200", "glove-300",
or "word2vec"

dimension Vector dimension (auto-detected for GloVe)

embed_fn Custom embedding function: fn(texts) -> matrix

model_path Path to pre-trained word vectors (GloVe .txt or word2vec .bin)

language Language behavior: "en" (English-focused) or "ml" (multilingual/Unicode)
tier Storage tier: "dense", "hybrid", "ultimate", or "graph"

auto_download Automatically download GloVe vectors if needed (default: TRUE)

Examples:

\dontrun{
Default TF-IDF embeddings (no external files needed)
db <- Vectrix$new("docs")

With GloVe 100d word vectors (auto-downloads ~130MB)
db <- Vectrix$new("docs", model = "glove-100")

With pre-downloaded GloVe
db <- Vectrix$new("docs"”, model_path = "path/to/glove.6B.10@d.txt")

Custom embedding function
db <- Vectrix$new("docs"”, embed_fn = my_embed_function, dimension = 768)

}
Method add(): Add texts to the collection

Usage:
Vectrix$add(texts, metadata = NULL, ids = NULL)

Arguments:

Vectrix

texts Single text or character vector of texts
metadata Optional metadata list or list of lists
ids Optional custom IDs

Returns: Self for chaining

Examples:

\dontrun{
db$add(c("text 1", "text 2"))
db$add("another text”, metadata = list(source = "web"))

3
Method set_language(): Update collection language behavior
Usage:
Vectrix$set_language(language = "en")
Arguments:

language Language behavior: "en" or "ml"
guag guag

Returns: Self for chaining

Method search(): Search the collection

Usage:
Vectrix$search(
query,
limit = 10,

mode = "hybrid”,

rerank = NULL,

filter = NULL,

diversity = 0.7
)

Arguments:
query Search query text
limit Number of results (default: 10)

non

mode Search mode: "dense", "sparse"”, "hybrid", "ultimate"
rerank Reranking method: NULL, "mmr", "exact", "
filter Metadata filter

diversity Diversity parameter for MMR (0-1)

1

cross-encoder’

Returns: Results object with search results

Examples:

\dontrun{

results <- db$search(”python programming")

results <- db$search(”AI"”, mode = "ultimate”, rerank = "mmr"
print(results$top()$text)

}

Method delete(): Delete documents by ID

97

98

Usage:
Vectrix$delete(ids)

Arguments:
ids Document ID(s) to delete

Returns: Self for chaining

Method clear(): Clear all documents from collection

Usage:
Vectrix$clear()

Returns: Self for chaining

Method count(): Get number of documents

Usage:
Vectrix$count()

Returns: Integer count

Method get(): Get documents by ID
Usage:
Vectrix$get(ids)
Arguments:
ids Document ID(s)
Returns: List of Result objects

Method similar(): Find similar documents to a given document
Usage:
Vectrix$similar(id, limit = 10)
Arguments:

id Document ID
limit Number of results

Returns: Results object

Method close(): Close the database connection
Usage:
Vectrix$close()

Method print(): Print Vectrix summary

Usage:
Vectrix$print()

Method clone(): The objects of this class are cloneable with this method.

Usage:

Vectrix$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Vectrix

Vectrix

Examples

Not run:
Create and add - ONE LINE
db <- Vectrix$new("my_docs")$add(c("Python is great”, "Machine learning is fun"))

Search - ONE LINE
results <- db$search("programming")

Full power - STILL ONE LINE
results <- db$search("”AI", mode = "ultimate”) # dense + sparse + rerank

End(Not run)

B o
Method ~Vectrix$new"
B oo

Not run:
Default TF-IDF embeddings (no external files needed)
db <- Vectrix$new("docs")

With GloVe 100d word vectors (auto-downloads ~130MB)
db <- Vectrix$new("docs"”, model = "glove-100")

With pre-downloaded GloVe
db <- Vectrix$new("docs"”, model_path = "path/to/glove.6B.100d.txt")

Custom embedding function
db <- Vectrix$new("docs”, embed_fn = my_embed_function, dimension = 768)

End(Not run)

B m
Method ~Vectrix$add"

H m o
Not run:

db$add(c("text 1", "text 2"))

db$add("another text”, metadata = list(source = "web"))

End(Not run)

#H# -

Method ~Vectrix$search”

B oo

Not run:

results <- db$search(”python programming")

results <- db$search("AI", mode = "ultimate”, rerank = "mmr"

print(results$top()$text)

100 VectrixDB

End(Not run)

VectrixDB VectrixDB Database Class

Description

Main database interface managing collections

Usage

vectrixdb(path = NULL, storage_type = "memory")

Arguments

path Storage path
storage_type Storage type

Value

VectrixDB object

Public fields

path Database storage path

Methods

Public methods:
e VectrixDB$new()
* VectrixDB$create_collection()
* VectrixDB$get_collection()
* VectrixDB$list_collections()
* VectrixDB$delete_collection()
* VectrixDB$has_collection()
* VectrixDB$stats()
* VectrixDB$close()
* VectrixDB$print()
* VectrixDB$clone()

Method new(): Create or open a VectrixDB database
Usage:
VectrixDB$new(path = NULL, storage_type = "memory")
Arguments:

path Storage path

VectrixDB 101

storage_type Storage type ("memory" or "sqlite")

Method create_collection(): Create a new collection

Usage:
VectrixDB$create_collection(
name,
dimension,
metric = "cosine”,
enable_text_index = TRUE

)

Arguments:

name Collection name

dimension Vector dimension

metric Distance metric
enable_text_index Enable text indexing

Returns: Collection object

Method get_collection(): Get an existing collection

Usage:
VectrixDB$get_collection(name)

Arguments:
name Collection name

Returns: Collection object

Method list_collections(): List all collections

Usage:
VectrixDB$list_collections()

Returns: Character vector of collection names

Method delete_collection(): Delete a collection

Usage:
VectrixDB$delete_collection(name)

Arguments:
name Collection name
Method has_collection(): Check if collection exists

Usage:
VectrixDB$has_collection(name)

Arguments:
name Collection name

Returns: Logical

Method stats(): Get database statistics

vectrix_create

102
Usage:
VectrixDB$stats()
Returns: List with stats
Method close(): Close the database
Usage:
VectrixDB$close()
Method print(): Print database summary
Usage:
VectrixDB$print ()
Method clone(): The objects of this class are cloneable with this method.
Usage:
VectrixDB$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
vectrix_create Create a new Vectrix collection
Description
Create a new Vectrix collection
Usage
vectrix_create(name = "default”, ...)
Arguments
name Collection name
Additional arguments passed to Vectrix$new()
Value

Vectrix object

vectrix_info

103

vectrix_info Display VectrixDB information

Description

Show database statistics and info

Usage

vectrix_info(path = NULL)

Arguments

path Database path

Examples

Not run:
vectrix_info(file.path(tempdir(), "my_data"))

End(Not run)

vectrix_open Open an existing Vectrix collection

Description

Open an existing Vectrix collection

Usage

vectrix_open(name = "default”, path = NULL)

Arguments
name Collection name
path Storage path
Value

Vectrix object

104

word_vectors

vectrix_serve Start VectrixDB server

Description

Launch a REST API server with optional dashboard

Usage
vectrix_serve(
path = NULL,
host = "127.0.0.1",
port = 7377,

api_key = NULL,
dashboard = TRUE,
launch.browser = FALSE

)

Arguments
path Database path
host Host address (default: "127.0.0.1")
port Port number (default: 7377)
api_key Optional API key for authentication
dashboard Enable dashboard (default: TRUE)

launch.browser Open dashboard/docs URL in browser (default: FALSE)

Value

Invisible NULL (server runs until stopped)

Examples

Not run:
vectrix_serve(path = file.path(tempdir(), "my_data"), port = 7377)

End(Not run)

word_vectors Word Vector Management

Description

Download, load, and use pre-trained word vectors (Glo Ve, fastText)

Index

+ datasets
ACLOperator, 6
CacheBackend, 14
DistanceMetric, 29
ENGLISH_STOPWORDS, 32
ExtractorType, 36
GraphSearchType, 49
LLMProvider, 57
SearchMode, 73

acl_config_from_list, 8
ACLConfig, 4
ACLFilter, 5
ACLOperator, 6
ACLPrincipal, 7
advanced_search, 10
AdvancedReranker, 8
AnalyzerChain, 10

BaseCache, 11

cache, 14
cache_config_from_env, 18
CacheBackend, 14
CacheConfig, 15
CacheEntry, 16

CacheStats, 17

cli, 19

CLIConfig, 19

Collection, 20

Community, 23
CommunityDetector, 24
create_cache, 25
create_default_graphrag_config, 25
create_hnsw_index, 26
create_pipeline, 26
create_sentence_embedder, 27
create_vector_cache, 27

DenseEmbedder, 28

105

DistanceMetric, 29
DocumentChunker, 30
download_vectors, 31
download_word_vectors, 31

embedders, 32
ENGLISH_STOPWORDS, 32
EnhancedSearchResults, 33
Entity, 34
ExtractionResult, 35
ExtractorType, 36

FacetAggregator, 36
FacetConfig, 37
FacetResult, 38
FacetValue, 39
FileCache, 40
Filter, 42

GlobalSearcher, 44
GlobalSearchResult, 45
graphrag, 46
GraphRAGConfig, 46
GraphRAGPipeline, 48
GraphSearchType, 49

hnsw, 50
HNSWIndex, 50

KeywordAnalyzer, 53
KnowledgeGraph, 54

LateInteractionEmbedder, 56
LLMProvider, 57
load_hnsw_index, 58
load_word_vectors, 58
LocalSearcher, 59
LocalSearchResult, 60

MemoryCache, 61
MMRReranker, 63

106

NoCache, 64
parse_acl, 65
quick_search, 66

RegexExtractor, 66
Relationship, 67
reranker, 68
RerankerEmbedder, 69
Result, 70
Results, 71

SearchMode, 73
SentenceEmbedder, 73
server, 75
set_cli_config, 75
SimpleStemmer, 75
SparseEmbedder, 76
storage, 77
SubGraph, 78

text_analyzer_english, 82
text_analyzer_keyword, 82
text_analyzer_simple, 83
text_analyzer_standard, 83
TextAnalyzer, 79
TextUnit, 81

vdb_add, 83
vdb_add_dir, 84
vdb_create, 85
vdb_dashboard, 85
vdb_dashboard_simple, 86
vdb_delete, 86
vdb_delete_docs, 87
vdb_export, 88
vdb_get, 88
vdb_import, 89
vdb_info, 89
vdb_interactive, 90
vdb_list, 90
vdb_open, 91
vdb_search, 91
vdb_stats, 92
VectorCache, 93
Vectrix, 95
vectrix_create, 102
vectrix_info, 103
vectrix_open, 103

vectrix_serve, 104
VectrixDB, 100
vectrixdb (VectrixDB), 100

VectrixDB: :BaseCache, 40, 61, 64

VectrixDB: :TextAnalyzer, 53

word_vectors, 104

INDEX

	ACLConfig
	ACLFilter
	ACLOperator
	ACLPrincipal
	acl_config_from_list
	AdvancedReranker
	advanced_search
	AnalyzerChain
	BaseCache
	cache
	CacheBackend
	CacheConfig
	CacheEntry
	CacheStats
	cache_config_from_env
	cli
	CLIConfig
	Collection
	Community
	CommunityDetector
	create_cache
	create_default_graphrag_config
	create_hnsw_index
	create_pipeline
	create_sentence_embedder
	create_vector_cache
	DenseEmbedder
	DistanceMetric
	DocumentChunker
	download_vectors
	download_word_vectors
	embedders
	ENGLISH_STOPWORDS
	EnhancedSearchResults
	Entity
	ExtractionResult
	ExtractorType
	FacetAggregator
	FacetConfig
	FacetResult
	FacetValue
	FileCache
	Filter
	GlobalSearcher
	GlobalSearchResult
	graphrag
	GraphRAGConfig
	GraphRAGPipeline
	GraphSearchType
	hnsw
	HNSWIndex
	KeywordAnalyzer
	KnowledgeGraph
	LateInteractionEmbedder
	LLMProvider
	load_hnsw_index
	load_word_vectors
	LocalSearcher
	LocalSearchResult
	MemoryCache
	MMRReranker
	NoCache
	parse_acl
	quick_search
	RegexExtractor
	Relationship
	reranker
	RerankerEmbedder
	Result
	Results
	SearchMode
	SentenceEmbedder
	server
	set_cli_config
	SimpleStemmer
	SparseEmbedder
	storage
	SubGraph
	TextAnalyzer
	TextUnit
	text_analyzer_english
	text_analyzer_keyword
	text_analyzer_simple
	text_analyzer_standard
	vdb_add
	vdb_add_dir
	vdb_create
	vdb_dashboard
	vdb_dashboard_simple
	vdb_delete
	vdb_delete_docs
	vdb_export
	vdb_get
	vdb_import
	vdb_info
	vdb_interactive
	vdb_list
	vdb_open
	vdb_search
	vdb_stats
	VectorCache
	Vectrix
	VectrixDB
	vectrix_create
	vectrix_info
	vectrix_open
	vectrix_serve
	word_vectors
	Index

