shajoezhu
)AutoslideR
core functions that are used for slide
rendering and workflow is already open-sourced with the autoslider.core
package, if you have built your own customized template package, namely
autoslider.*
(see this page
for guidelines), once the template functions are stable, generic, we
also encourage to make these functions open-source for external users.
This article describes the how to process. Template that contains
specific variable names or columns are not recommended for
open-sourcing. The key steps include the following
autoslider.*
to autoslider.core
.autoslider.core
R/
directory, rebuild the autoslider.core
documentation, and update the autoslider.core
NAMESPACE
.autoslideR
) the
relevant test function to autoslider.core
tests/testthat
directory.autoslider.*
side.R/autoslider_core.R
file.autoslideR
NAMESPACE
.For example, t_dm_slide.R
contains
t_dm_slide
template function, as the following
#' Demographic table
#'
#' @param adsl ADSL data set, dataframe
#' @param arm Arm variable, character, "`TRT01P" by default.
#' @param vars Characters of variables
#' @param stats see `.stats` from [tern::analyze_vars()]
#' @param split_by_study Split by study, building structured header for tables
#' @param side_by_side "GlobalAsia" or "GlobalAsiaChina" to define the side by side requirement
#' @return rtables object
#' @inherit gen_notes note
#' @export
#' @examples
#' library(dplyr)
#' adsl <- eg_adsl
#' out1 <- t_dm_slide(adsl, "TRT01P", c("SEX", "AGE", "RACE", "ETHNIC", "COUNTRY"))
#' print(out1)
#' generate_slides(out1, paste0(tempdir(), "/dm.pptx"))
#'
#' out2 <- t_dm_slide(adsl, "TRT01P", c("SEX", "AGE", "RACE", "ETHNIC", "COUNTRY"),
#' split_by_study = TRUE
#' )
#' print(out2)
#'
t_dm_slide <- function(adsl,
arm = "TRT01P",
vars = c("AGE", "SEX", "RACE"),
stats = c("median", "range", "count_fraction"),
split_by_study = FALSE,
side_by_side = NULL) {
if (is.null(side_by_side)) {
extra <- NULL
} else {
extra <- c("COUNTRY")
}
for (v in c(vars, extra)) {
assert_that(has_name(adsl, v))
}
adsl1 <- adsl %>%
select(all_of(c("STUDYID", "USUBJID", arm, vars, extra)))
lyt <- build_table_header(adsl1, arm,
split_by_study = split_by_study,
side_by_side = side_by_side
)
lyt <- lyt %>%
analyze_vars(
na.rm = TRUE,
.stats = stats,
denom = "n",
vars = vars,
.formats = c(mean_sd = "xx.xx (xx.xx)", median = "xx.xx"),
var_labels = formatters::var_labels(adsl1)[vars]
)
result <- lyt_to_side_by_side(lyt, adsl1, side_by_side)
if (is.null(side_by_side)) {
# adding "N" attribute
arm <- col_paths(result)[[1]][1]
n_r <- data.frame(
ARM = toupper(names(result@col_info)),
N = col_counts(result) %>% as.numeric()
) %>%
`colnames<-`(c(paste(arm), "N")) %>%
dplyr::arrange(get(arm))
attr(result, "N") <- n_r
}
result@main_title <- "Demographic slide"
result
}
t_dm_slide.R
file from autoslider.*
to autoslider.core
R/
directory.autoslider.*
tests/testthat/test-t_dm_slide.R
to
autoslider.core
tests/testthat/
.autoslider.*
R/autoslider_core.R
file.#' Demographic table
#' @importFrom autoslider.core t_dm_slide
#' @examples
#' library(dplyr)
#' adsl <- eg_adsl
#' out1 <- t_dm_slide(adsl, "TRT01P", c("SEX", "AGE", "RACE", "ETHNIC", "COUNTRY"))
#' print(out1)
#' generate_slides(out1, "dm.pptx")
#'
#' out2 <- t_dm_slide(adsl, "TRT01P", c("SEX", "AGE", "RACE", "ETHNIC", "COUNTRY"),
#' split_by_study = TRUE
#' )
#' print(out2)
#'
#' @export
autoslider.core::t_dm_slide