
Package ‘directadjusting’
February 4, 2026

Type Package

Title Directly Adjusted Estimates

Version 0.6.1

Description Compute estimates and confidence intervals of weighted
averages quickly and easily. Weighted averages are computed using
data.table for speed. Confidence intervals are approximated using the
delta method with either using known formulae or via algorithmic or
numerical integration.

License MIT + file LICENSE

URL https://github.com/FinnishCancerRegistry/directadjusting/

BugReports https://github.com/FinnishCancerRegistry/directadjusting/issues

Depends R (>= 2.10)

Imports data.table, stats

Encoding UTF-8

Language en-GB

RoxygenNote 7.3.3

NeedsCompilation no

Author Joonas Miettinen [cre, aut] (ORCID:
<https://orcid.org/0000-0001-8624-6754>)

Maintainer Joonas Miettinen <joonas.miettinen@cancer.fi>

Repository CRAN

Date/Publication 2026-02-04 19:30:02 UTC

Contents
confidence_intervals . 2
directly_adjusted_estimates . 4

Index 10

1

https://github.com/FinnishCancerRegistry/directadjusting/
https://github.com/FinnishCancerRegistry/directadjusting/issues
https://orcid.org/0000-0001-8624-6754

2 confidence_intervals

confidence_intervals Confidence Intervals

Description

Functions to compute confidence intervals.

Usage

delta_method_confidence_intervals(
statistics,
variances,
conf_lvl = 0.95,
conf_method = "identity"

)

Arguments

statistics [numeric] (no default)
Statistics for which to calculate confidence intervals.

variances [numeric] (no default)
Variance estimates of statistics used to compute confidence intervals.

conf_lvl [numeric] (default 0.95)
Confidence level of confidence intervals in]0, 1[.

conf_method [character, call, list] (default "identity")
Delta method transformation to be applied.

• character: Use one of the pre-defined transformations. Table of options
with the corresponding expressions:

name g g_inv g_gradient
identity theta g 1
log log(theta) exp(g) 1/theta
log-log log(-log(theta)) exp(-exp(g)) 1/(theta * log(theta))
logit log(theta) - log(1 - theta) 1/(1 + exp(-g)) 1/(theta - theta^2)

• call: A quoted R expression which produces the lower / upper limit when
evaluated. E.g. quote(theta * exp(z * theta_standard_error / theta)).

• list: Contains both the transformation and its inverse. E.g. list(g =
quote(log(theta)), g_inv = quote(exp(g))).

Value

directadjusting::delta_method_confidence_intervals
Returns a data.table with columns c("statistic", "variance", "ci_lo", "ci_hi").

confidence_intervals 3

Functions

directadjusting::delta_method_confidence_intervals
directadjusting::delta_method_confidence_intervals can be used to compute confidence
intervals using the delta method. The following steps are performed:

• Compute confidence intervals based on conf_method, statistics, variances, and conf_lvl.

– If conf_method is a string, a pre-defined set of mathematical expressions are used to
compute the confidence intervals.

– If conf_method is a call, it is evaluated with the variables theta, theta_variance,
theta_standard_error, and z. This is done once for the lower and once for the upper
bound of the confidence interval, so for the lower bound and conf_level = 0.95 we use
z = stats::qnorm(p = (1 - conf_lvl) / 2).

– If conf_method is a list, it must contain elements g and g_inv, e.g. list(g = quote(log(theta)),
g_inv = quote(exp(g))).

* g is passed to [stats::deriv]. If that fails, a numerical derivative is computed.

* With the derivative known the variance after the transformation is variance * g_gradient
^ 2.

* With the transformed variance known the transform confidence interval is calculated
simply via g(theta) + g_standard_error * z.

* These transformation-scale confidence intervals are then converted back to the origi-
nal scale using g_inv.

• Collect a data.table with the confidence intervals and with also the columns statistics =
statistics and variance = variances.

• Add attribute named ci_meta to the data.table. This attribute is a list which contains ele-
ments conf_lvl and conf_method.

• Return data.table with columns c("statistic", "variance", "ci_lo", "ci_hi").

Examples

directadjusting::delta_method_confidence_intervals
dt_1 <- directadjusting::delta_method_confidence_intervals(

statistics = 0.9,
variances = 0.1,
conf_lvl = 0.95,
conf_method = "log"

)

you can also supply your own math for computing the confidence intervals
dt_2 <- directadjusting::delta_method_confidence_intervals(

statistics = 0.9,
variances = 0.1,
conf_lvl = 0.95,
conf_method = quote(theta * exp(z * theta_standard_error / theta))

)

dt_3 <- directadjusting::delta_method_confidence_intervals(
statistics = 0.9,
variances = 0.1,

4 directly_adjusted_estimates

conf_lvl = 0.95,
conf_method = list(

g = quote(log(theta)),
g_inv = quote(exp(g))

)
)

dt_4 <- directadjusting::delta_method_confidence_intervals(
statistics = 0.9,
variances = 0.1,
conf_lvl = 0.95,
conf_method = list(

g = quote(stats::qnorm(theta)),
g_inv = quote(stats::pnorm(g))

)
)
stopifnot(

all.equal(dt_1, dt_2, check.attributes = FALSE),
all.equal(dt_1, dt_3, check.attributes = FALSE)

)

directly_adjusted_estimates

Directly Adjusted Estimates

Description

Compute direct adjusted estimates from a table of statistics.

Usage

directly_adjusted_estimates(
stats_dt,
stat_col_nms,
var_col_nms,
stratum_col_nms = NULL,
adjust_col_nms = NULL,
conf_lvls = 0.95,
conf_methods = "identity",
weights = NULL

)

Arguments

stats_dt [data.frame] (no default)
a data.frame containing estimates and variance estimates of statistics

stat_col_nms [character] (no default)
names of columns in stats_dt containing estimates (statistics); NA statistics
values cause also NA confidence intervals

directly_adjusted_estimates 5

var_col_nms [character] (default NULL)

• if NULL, no confidence intervals can (will) be computed
• if character vector, names of columns in stats_dt containing variance

estimates of the statistics specified in stat_col_nms with one-to-one cor-
respondence; NA elements in var_col_nms cause no confidence intervals
to computed for those statistics; NA variance estimates in stats_dt cause
NA confidence intervals; negative values cause an error; Inf values cause
c(-Inf, Inf) intervals with confidence interval method "identity", etc.

stratum_col_nms

[NULL, character] (default NULL)
names of columns in stats_dt by which statistics are stratified (and they should
be stratified by these columns after direct adjusting)

adjust_col_nms [NULL, character] (default NULL)
Names of columns in stats_dt by which statistics are currently stratified and
by which the statistics should be adjusted (e.g. "agegroup").

• NULL: No adjusting is performed.
• character: Adjust by these columns.

conf_lvls [numeric] (default 0.95)
confidence levels for confidence intervals; you may specify each statistic (see
stat_col_nms) its own level by supplying a vector of values; values other than
between (0, 1) cause an error

conf_methods [character, list] (default "identity")
Method(s) to compute confidence intervals. Either one method for all stats
(stat_col_nms) or otherwise this must be of length (length(stat_col_nms)).
Each element is passed to [delta_method_confidence_intervals] separately.
Can also be "none": This causes no confidence intervals to be calculated for the
respective stat_col_nms element(s).

weights [double, data.table, character]

The weights need not sum to one as this is ensured internally. You may supply
weights in one of the following ways:

• double: A vector of weights, the length of which must match the number
of strata defined by adjusting variables.

• data.table: With one or more columns with names matching to those
variables that are used to adjust estimates, and one column named weight.
E.g. data.table(agegroup = 1:3, weight = c(100, 500, 400)).

Details

directadjusting::directly_adjusted_estimates computes weighted averages and their con-
fidence intervals. Performs the following steps:

• Makes a new data.table with data from stats_dt without copying any column data to avoid
modifying stats_dt itself.

• Handles argument weights in order to produce a data.table of weights if it wasn’t one
already.

• Inserts the weights into stats_dt.

6 directly_adjusted_estimates

– Weights are merged into stats_dt in-place by making a left join on weights_dt using
stats_dt and adding column weight resulting from this join into stats_dt.

– Re-scale weights to sum to one within each stratum defined by stratum_col_nms.

• Computes weighted averages of stat_col_nms and var_col_nms (the latter with squared
weights because they are variances) over adjust_col_nms. This results in a data.table
without column(s) adjust_col_nms.

• For each i in seq_along(stat_col_nm):

– If conf_methods[[i]] is "none", doesn’t compute confidence intervals.
– Otherwise calls [delta_method_confidence_intervals].

• Sets attribute directly_adjusted_estimates_meta. It is a list containing:

– call: The call to directadjusting::directly_adjusted_estimates.
– stat_col_nms: The argument as given by the user.
– var_col_nms: The argument as given by the user.
– stratum_col_nms: The argument as given by the user.
– adjust_col_nms: The argument as given by the user.
– conf_lvls: The argument, but always of length length(stat_col_nms).
– conf_methods: The argument, but always of length length(stat_col_nms).

• Returns a data.table. Returned columns are those given via stratum_col_nms, stat_col_nms,
and var_col_nms.

Value

Returns a data.table. Returned columns are those given via stratum_col_nms, stat_col_nms,
and var_col_nms.

Examples

directadjusting::directly_adjusted_estimates
library("data.table")
set.seed(1337)

offsets <- rnorm(8, mean = 1000, sd = 100)
baseline <- 100
hrs_by_sex <- rep(1:2, each = 4)
hrs_by_ag <- rep(c(0.75, 0.90, 1.10, 1.25), times = 2)
counts <- rpois(8, baseline * hrs_by_sex * hrs_by_ag)

raw estimates
my_stats <- data.table::data.table(
sex = rep(1:2, each = 4),
ag = rep(1:4, times = 2),
e = counts / offsets,
v = counts / (offsets ** 2)

)

adjusted by age group
my_adj_stats <- directly_adjusted_estimates(

stats_dt = my_stats,

directly_adjusted_estimates 7

stat_col_nms = "e",
var_col_nms = "v",
conf_lvls = 0.95,
conf_methods = "log",
stratum_col_nms = "sex",
adjust_col_nms = "ag",
weights = c(200, 300, 400, 100)

)

adjusted by smaller age groups, stratified by larger age groups
my_stats[, "ag2" := c(1,1, 2,2, 1,1, 2,2)]
my_adj_stats <- directly_adjusted_estimates(

stats_dt = my_stats,
stat_col_nms = "e",
var_col_nms = "v",
conf_lvls = 0.95,
conf_methods = "log",
stratum_col_nms = c("sex", "ag2"),
adjust_col_nms = "ag",
weights = c(200, 300, 400, 100)

)

with no adjusting columns defined you get the same table as input
but with confidence intervals. this for the sake of
convenience for programming cases where sometimes you want to adjust,
sometimes not.
stats_dt_2 <- data.table::data.table(

sex = 0:1,
e = 0.0,
v = 0.1

)
dt_2 <- directadjusting::directly_adjusted_estimates(

stats_dt = stats_dt_2,
stat_col_nms = "e",
var_col_nms = "v",
conf_lvls = 0.95,
conf_methods = "identity",
stratum_col_nms = "sex"

)
stopifnot(

dt_2[["e"]] == stats_dt_2[["e"]],
dt_2[["v"]] == stats_dt_2[["v"]],
dt_2[["sex"]] == stats_dt_2[["sex"]]

)

sometimes when adjusting rates or counts, there can be strata where the
statistic is zero. these should be included in your statistics dataset
if you still want the weighted average be influenced by the zero.
otherwise you will get the wrong result. sometimes when naively tabulating
a dataset with e.g. dt[, .N, keyby = "stratum"] one does not get a result
row for a stratum that does not appear in the dataset even if we know that
the stratum exists, for instance only the age groups 1-17 are present in
the dataset.

8 directly_adjusted_estimates

stats_dt_3 <- data.table::data.table(
age_group = 1:18,
count = 17:0,
var = 17:0

)

this goes as intended
dt_3 <- directadjusting::directly_adjusted_estimates(

stats_dt = stats_dt_3,
stat_col_nms = "count",
var_col_nms = "var",
stratum_col_nms = NULL,
adjust_col_nms = "age_group",
weights = data.table::data.table(
age_group = 1:18,
weight = 18:1

)
)

this does not
dt_4 <- directadjusting::directly_adjusted_estimates(

stats_dt = stats_dt_3[1:17,],
stat_col_nms = "count",
var_col_nms = "var",
stratum_col_nms = NULL,
adjust_col_nms = "age_group",
weights = data.table::data.table(

age_group = 1:18,
weight = 18:1

)
)

the weighted average that included the zero is smaller
stopifnot(

dt_3[["count"]] < dt_4[["count"]]
)

NAs are allowed and produce in turn NAs silently.
stats_dt_5 <- data.table::data.table(

age_group = 1:18,
count = c(NA, 16:0),
var = c(NA, 16:0)

)
dt_5 <- directadjusting::directly_adjusted_estimates(

stats_dt = stats_dt_5,
stat_col_nms = "count",
var_col_nms = "var",
adjust_col_nms = "age_group",
weights = data.table::data.table(

age_group = 1:18,
weight = 18:1

)
)

directly_adjusted_estimates 9

stopifnot(
is.na(dt_5)

)

stats_dt_6 <- data.table::data.table(
age_group = 1:4,
survival = c(0.20, 0.40, 0.60, 0.80),
var = 0.05 ^ 2

)

you can use conf_method to pass whatever to
`delta_method_confidence_intervals`.
dt_6 <- directadjusting::directly_adjusted_estimates(

stats_dt = stats_dt_6,
stat_col_nms = "survival",
var_col_nms = "var",
adjust_col_nms = "age_group",
weights = data.table::data.table(
age_group = 1:4,
weight = 1:4

),
conf_methods = list(

list(
g = quote(stats::qnorm(theta)),
g_inv = quote(stats::pnorm(g))

)
)

)

Index

confidence_intervals, 2

delta_method_confidence_intervals
(confidence_intervals), 2

directly_adjusted_estimates, 4

10

	confidence_intervals
	directly_adjusted_estimates
	Index

