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2 confidence_intervals

confidence_intervals Confidence Intervals

Description

Functions to compute confidence intervals.

Usage

delta_method_confidence_intervals(
statistics,
variances,
conf_lvl = 0.95,
conf_method = "identity"

)

Arguments

statistics [numeric] (no default)
Statistics for which to calculate confidence intervals.

variances [numeric] (no default)
Variance estimates of statistics used to compute confidence intervals.

conf_lvl [numeric] (default 0.95)
Confidence level of confidence intervals in ]0, 1[.

conf_method [character, call, list] (default "identity")
Delta method transformation to be applied.

• character: Use one of the pre-defined transformations. Table of options
with the corresponding expressions:

name g g_inv g_gradient
identity theta g 1
log log(theta) exp(g) 1/theta
log-log log(-log(theta)) exp(-exp(g)) 1/(theta * log(theta))
logit log(theta) - log(1 - theta) 1/(1 + exp(-g)) 1/(theta - theta^2)

• call: A quoted R expression which produces the lower / upper limit when
evaluated. E.g. quote(theta * exp(z * theta_standard_error / theta)).

• list: Contains both the transformation and its inverse. E.g. list(g =
quote(log(theta)), g_inv = quote(exp(g))).

Value

directadjusting::delta_method_confidence_intervals
Returns a data.table with columns c("statistic", "variance", "ci_lo", "ci_hi").
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Functions

directadjusting::delta_method_confidence_intervals
directadjusting::delta_method_confidence_intervals can be used to compute confidence
intervals using the delta method. The following steps are performed:

• Compute confidence intervals based on conf_method, statistics, variances, and conf_lvl.

– If conf_method is a string, a pre-defined set of mathematical expressions are used to
compute the confidence intervals.

– If conf_method is a call, it is evaluated with the variables theta, theta_variance,
theta_standard_error, and z. This is done once for the lower and once for the upper
bound of the confidence interval, so for the lower bound and conf_level = 0.95 we use
z = stats::qnorm(p = (1 - conf_lvl) / 2).

– If conf_method is a list, it must contain elements g and g_inv, e.g. list(g = quote(log(theta)),
g_inv = quote(exp(g))).

* g is passed to [stats::deriv]. If that fails, a numerical derivative is computed.

* With the derivative known the variance after the transformation is variance * g_gradient
^ 2.

* With the transformed variance known the transform confidence interval is calculated
simply via g(theta) + g_standard_error * z.

* These transformation-scale confidence intervals are then converted back to the origi-
nal scale using g_inv.

• Collect a data.table with the confidence intervals and with also the columns statistics =
statistics and variance = variances.

• Add attribute named ci_meta to the data.table. This attribute is a list which contains ele-
ments conf_lvl and conf_method.

• Return data.table with columns c("statistic", "variance", "ci_lo", "ci_hi").

Examples

# directadjusting::delta_method_confidence_intervals
dt_1 <- directadjusting::delta_method_confidence_intervals(

statistics = 0.9,
variances = 0.1,
conf_lvl = 0.95,
conf_method = "log"

)

# you can also supply your own math for computing the confidence intervals
dt_2 <- directadjusting::delta_method_confidence_intervals(

statistics = 0.9,
variances = 0.1,
conf_lvl = 0.95,
conf_method = quote(theta * exp(z * theta_standard_error / theta))

)

dt_3 <- directadjusting::delta_method_confidence_intervals(
statistics = 0.9,
variances = 0.1,
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conf_lvl = 0.95,
conf_method = list(

g = quote(log(theta)),
g_inv = quote(exp(g))

)
)

dt_4 <- directadjusting::delta_method_confidence_intervals(
statistics = 0.9,
variances = 0.1,
conf_lvl = 0.95,
conf_method = list(

g = quote(stats::qnorm(theta)),
g_inv = quote(stats::pnorm(g))

)
)
stopifnot(

all.equal(dt_1, dt_2, check.attributes = FALSE),
all.equal(dt_1, dt_3, check.attributes = FALSE)

)

directly_adjusted_estimates

Directly Adjusted Estimates

Description

Compute direct adjusted estimates from a table of statistics.

Usage

directly_adjusted_estimates(
stats_dt,
stat_col_nms,
var_col_nms,
stratum_col_nms = NULL,
adjust_col_nms = NULL,
conf_lvls = 0.95,
conf_methods = "identity",
weights = NULL

)

Arguments

stats_dt [data.frame] (no default)
a data.frame containing estimates and variance estimates of statistics

stat_col_nms [character] (no default)
names of columns in stats_dt containing estimates (statistics); NA statistics
values cause also NA confidence intervals
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var_col_nms [character] (default NULL)

• if NULL, no confidence intervals can (will) be computed
• if character vector, names of columns in stats_dt containing variance

estimates of the statistics specified in stat_col_nms with one-to-one cor-
respondence; NA elements in var_col_nms cause no confidence intervals
to computed for those statistics; NA variance estimates in stats_dt cause
NA confidence intervals; negative values cause an error; Inf values cause
c(-Inf, Inf) intervals with confidence interval method "identity", etc.

stratum_col_nms

[NULL, character] (default NULL)
names of columns in stats_dt by which statistics are stratified (and they should
be stratified by these columns after direct adjusting)

adjust_col_nms [NULL, character] (default NULL)
Names of columns in stats_dt by which statistics are currently stratified and
by which the statistics should be adjusted (e.g. "agegroup").

• NULL: No adjusting is performed.
• character: Adjust by these columns.

conf_lvls [numeric] (default 0.95)
confidence levels for confidence intervals; you may specify each statistic (see
stat_col_nms) its own level by supplying a vector of values; values other than
between (0, 1) cause an error

conf_methods [character, list] (default "identity")
Method(s) to compute confidence intervals. Either one method for all stats
(stat_col_nms) or otherwise this must be of length (length(stat_col_nms)).
Each element is passed to [delta_method_confidence_intervals] separately.
Can also be "none": This causes no confidence intervals to be calculated for the
respective stat_col_nms element(s).

weights [double, data.table, character]

The weights need not sum to one as this is ensured internally. You may supply
weights in one of the following ways:

• double: A vector of weights, the length of which must match the number
of strata defined by adjusting variables.

• data.table: With one or more columns with names matching to those
variables that are used to adjust estimates, and one column named weight.
E.g. data.table(agegroup = 1:3, weight = c(100, 500, 400)).

Details

directadjusting::directly_adjusted_estimates computes weighted averages and their con-
fidence intervals. Performs the following steps:

• Makes a new data.table with data from stats_dt without copying any column data to avoid
modifying stats_dt itself.

• Handles argument weights in order to produce a data.table of weights if it wasn’t one
already.

• Inserts the weights into stats_dt.
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– Weights are merged into stats_dt in-place by making a left join on weights_dt using
stats_dt and adding column weight resulting from this join into stats_dt.

– Re-scale weights to sum to one within each stratum defined by stratum_col_nms.

• Computes weighted averages of stat_col_nms and var_col_nms (the latter with squared
weights because they are variances) over adjust_col_nms. This results in a data.table
without column(s) adjust_col_nms.

• For each i in seq_along(stat_col_nm):

– If conf_methods[[i]] is "none", doesn’t compute confidence intervals.
– Otherwise calls [delta_method_confidence_intervals].

• Sets attribute directly_adjusted_estimates_meta. It is a list containing:

– call: The call to directadjusting::directly_adjusted_estimates.
– stat_col_nms: The argument as given by the user.
– var_col_nms: The argument as given by the user.
– stratum_col_nms: The argument as given by the user.
– adjust_col_nms: The argument as given by the user.
– conf_lvls: The argument, but always of length length(stat_col_nms).
– conf_methods: The argument, but always of length length(stat_col_nms).

• Returns a data.table. Returned columns are those given via stratum_col_nms, stat_col_nms,
and var_col_nms.

Value

Returns a data.table. Returned columns are those given via stratum_col_nms, stat_col_nms,
and var_col_nms.

Examples

# directadjusting::directly_adjusted_estimates
library("data.table")
set.seed(1337)

offsets <- rnorm(8, mean = 1000, sd = 100)
baseline <- 100
hrs_by_sex <- rep(1:2, each = 4)
hrs_by_ag <- rep(c(0.75, 0.90, 1.10, 1.25), times = 2)
counts <- rpois(8, baseline * hrs_by_sex * hrs_by_ag)

# raw estimates
my_stats <- data.table::data.table(
sex = rep(1:2, each = 4),
ag = rep(1:4, times = 2),
e = counts / offsets,
v = counts / (offsets ** 2)

)

# adjusted by age group
my_adj_stats <- directly_adjusted_estimates(

stats_dt = my_stats,
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stat_col_nms = "e",
var_col_nms = "v",
conf_lvls = 0.95,
conf_methods = "log",
stratum_col_nms = "sex",
adjust_col_nms = "ag",
weights = c(200, 300, 400, 100)

)

# adjusted by smaller age groups, stratified by larger age groups
my_stats[, "ag2" := c(1,1, 2,2, 1,1, 2,2)]
my_adj_stats <- directly_adjusted_estimates(

stats_dt = my_stats,
stat_col_nms = "e",
var_col_nms = "v",
conf_lvls = 0.95,
conf_methods = "log",
stratum_col_nms = c("sex", "ag2"),
adjust_col_nms = "ag",
weights = c(200, 300, 400, 100)

)

# with no adjusting columns defined you get the same table as input
# but with confidence intervals. this for the sake of
# convenience for programming cases where sometimes you want to adjust,
# sometimes not.
stats_dt_2 <- data.table::data.table(

sex = 0:1,
e = 0.0,
v = 0.1

)
dt_2 <- directadjusting::directly_adjusted_estimates(

stats_dt = stats_dt_2,
stat_col_nms = "e",
var_col_nms = "v",
conf_lvls = 0.95,
conf_methods = "identity",
stratum_col_nms = "sex"

)
stopifnot(

dt_2[["e"]] == stats_dt_2[["e"]],
dt_2[["v"]] == stats_dt_2[["v"]],
dt_2[["sex"]] == stats_dt_2[["sex"]]

)

# sometimes when adjusting rates or counts, there can be strata where the
# statistic is zero. these should be included in your statistics dataset
# if you still want the weighted average be influenced by the zero.
# otherwise you will get the wrong result. sometimes when naively tabulating
# a dataset with e.g. dt[, .N, keyby = "stratum"] one does not get a result
# row for a stratum that does not appear in the dataset even if we know that
# the stratum exists, for instance only the age groups 1-17 are present in
# the dataset.
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stats_dt_3 <- data.table::data.table(
age_group = 1:18,
count = 17:0,
var = 17:0

)

# this goes as intended
dt_3 <- directadjusting::directly_adjusted_estimates(

stats_dt = stats_dt_3,
stat_col_nms = "count",
var_col_nms = "var",
stratum_col_nms = NULL,
adjust_col_nms = "age_group",
weights = data.table::data.table(
age_group = 1:18,
weight = 18:1

)
)

# this does not
dt_4 <- directadjusting::directly_adjusted_estimates(

stats_dt = stats_dt_3[1:17, ],
stat_col_nms = "count",
var_col_nms = "var",
stratum_col_nms = NULL,
adjust_col_nms = "age_group",
weights = data.table::data.table(

age_group = 1:18,
weight = 18:1

)
)

# the weighted average that included the zero is smaller
stopifnot(

dt_3[["count"]] < dt_4[["count"]]
)

# NAs are allowed and produce in turn NAs silently.
stats_dt_5 <- data.table::data.table(

age_group = 1:18,
count = c(NA, 16:0),
var = c(NA, 16:0)

)
dt_5 <- directadjusting::directly_adjusted_estimates(

stats_dt = stats_dt_5,
stat_col_nms = "count",
var_col_nms = "var",
adjust_col_nms = "age_group",
weights = data.table::data.table(

age_group = 1:18,
weight = 18:1

)
)



directly_adjusted_estimates 9

stopifnot(
is.na(dt_5)

)

stats_dt_6 <- data.table::data.table(
age_group = 1:4,
survival = c(0.20, 0.40, 0.60, 0.80),
var = 0.05 ^ 2

)

# you can use conf_method to pass whatever to
# `delta_method_confidence_intervals`.
dt_6 <- directadjusting::directly_adjusted_estimates(

stats_dt = stats_dt_6,
stat_col_nms = "survival",
var_col_nms = "var",
adjust_col_nms = "age_group",
weights = data.table::data.table(
age_group = 1:4,
weight = 1:4

),
conf_methods = list(

list(
g = quote(stats::qnorm(theta)),
g_inv = quote(stats::pnorm(g))

)
)

)
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