The 'epilogi' variable selection algorithm is implemented for the case of continuous response and predictor variables. The relevant paper is: Lakiotaki K., Papadovasilakis Z., Lagani V., Fafalios S., Charonyktakis P., Tsagris M. and Tsamardinos I. (2023). "Automated machine learning for Genome Wide Association Studies". Bioinformatics, 39(9): btad545. <doi:10.1093/bioinformatics/btad545>.
Version: | 1.2 |
Depends: | R (≥ 4.0) |
Imports: | Rfast, stats |
Suggests: | Rfast2 |
Published: | 2024-12-23 |
DOI: | 10.32614/CRAN.package.epilogi |
Author: | Michail Tsagris [aut, cre] |
Maintainer: | Michail Tsagris <mtsagris at uoc.gr> |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: | no |
CRAN checks: | epilogi results |
Reference manual: | epilogi.pdf |
Package source: | epilogi_1.2.tar.gz |
Windows binaries: | r-devel: epilogi_1.2.zip, r-release: epilogi_1.2.zip, r-oldrel: epilogi_1.2.zip |
macOS binaries: | r-devel (arm64): epilogi_1.2.tgz, r-release (arm64): epilogi_1.2.tgz, r-oldrel (arm64): epilogi_1.2.tgz, r-devel (x86_64): epilogi_1.2.tgz, r-release (x86_64): epilogi_1.2.tgz, r-oldrel (x86_64): epilogi_1.2.tgz |
Old sources: | epilogi archive |
Please use the canonical form https://CRAN.R-project.org/package=epilogi to link to this page.