Package ‘fru’

February 4, 2026

Title A Blazing Fast Implementation of Random Forest
Version 0.0.2

Description Yet another implementation of the Random For-
est method by Breiman (2001) <doi:10.1023/A:1010933404324>, written in Rust and tai-
lored towards stability, correctness, efficiency and scalability on modern multi-core machines.
Handles both classification and regression, as well as provides permutation feature impor-
tance via a novel, highly optimised algorithm.

URL https://gitlab.com/mbq/fru

BugReports https://gitlab.com/mbq/fru/-/issues

SystemRequirements Cargo (Rust's package manager) >= 1.85, rustc >=
1.85

License GPL-3
Encoding UTF-8
RoxygenNote 7.3.3
NeedsCompilation yes

Author Miron Bartosz Kursa [aut, cre] (ORCID:
<https://orcid.org/0000-0001-7672-648X>),
Krzysztof Piotr Piwonski [aut] (ORCID:
<https://orcid.org/0000-0002-0977-5959>)

Maintainer Miron Bartosz Kursa <m@mbq.me>
Repository CRAN
Date/Publication 2026-02-04 18:00:14 UTC

Contents

extract_forest e
fru . . e
IMPOTLANCE . .« . v v v e e e e e e e e e e e e e e e e e e
predict.fruo
print.fru . ..o
solidify e

https://doi.org/10.1023/A:1010933404324
https://gitlab.com/mbq/fru
https://gitlab.com/mbq/fru/-/issues
https://orcid.org/0000-0001-7672-648X
https://orcid.org/0000-0002-0977-5959

2 fru

Index 8

extract_forest Extract the forest

Description

Extracts the whole decision forest as a left-first, depth-first walk over all vertices.

Usage

extract_forest(x)

Arguments

X A model to convert; has to hold the forest (forest=TRUE flag passed to fru).

Value

A data frame with the forest structure. Each row represents a step in a left-first, depth-first walk over
the forest. The Feature column holds, for branches, the feature used for a split, or NA, for leaves.
Similarly, Threshold and Subset columns hold the splitting criterion for branches; they exists only
when holding any data. For a numerical or integer split, observations with values strictly larger than
threshold are sent left. For a subset split, observations with values in the threshold subsets are sent
left. Logical splits have a fixed criterion, TRUEs are sent left. This way, they have no corresponding
criterion column. Finally, leaf visits have their vote stored in the Vote colum.

Note

This function will solidify the model object.

fru Train the fru model

Description

Fru is an implementation of Leo Breiman’s Random Forest (tm) method. It fits an ensemble of de-
cision trees built on bootstrap resamples of observations and additionally permuted by constraining
split optimisation to a random subset of features. The ensemble prediction is than established from
individual trees by voting. Thanks to its construction, the model can also provide a cross-validation-
like internal approximation of error, so called out-of-bag predictions, as well as importance scores
for features.

fru

Usage

fru(
X,
Y,
trees =
tries,

500L,

forest = FALSE,
oob = TRUE,

importance

FALSE,

solidify = FALSE,

threads

Arguments

X

trees

tries

forest
oob
importance

solidify

threads

Details

oL

Data frame containing predictors; must only contain logical, numeric, integer or
factor columns, without NAs.

Decision; either a factor or logical, for classification, or numeric, for regression.
Integer decision will be silently converted into a real vector and treated as such
afterwards. NA values are not accepted.

Number of trees to grow, a single number larger than zero. Also called ntree in
other software.

Number of features to try at each split, a single number larger than zero and not
larger than the number of columns in x. Also called mtry in other software. By
default, set to the rounded square root of the number of features.

If set to TRUE, the forest object is returned and can be used for prediction.
If set to TRUE, out-of-bag (OOB) predictions will be calculated.
If set to TRUE, importance scores will be calculated.

If set to TRUE, the forest object will use more memory but will survive seriali-
sation, in particular when saved by save, saveRDS or when sent between pro-
cesses. This can be done later with solidify, unless the model structure was
already lost.

Number of threads to use; by default, or when set to 0, fru will try to use all
available computing cores.

In comparison to similar packages, fru is a tailored towards stability, correctness, efficiency and
scalability on modern multithreaded machines, providing solid foundation for large data analysis,
higher-level methods or production pipeline. To this end, fru exposes only the original hyper-
parameters and provides only the permutational importance, though calculated with a novel algo-
rithm that alleviates its greater computational burden.

Fru accepts logical, numeric (including integer) and factor features; NAs are not allowed and will
result in error. Logical features are always split into false/true groups without optimisation, yet
are scored via weighted Gini impurity (for classification) or variance reduction (for regression),
in order to be compared with splits on other features. For numerical features, threshold value is

4 importance

optimised by an exhaustive scan of the criterion above; real values get threshold as a mid-point
between values around the split, while integer values as a minimal of the two. In case of a tie in
the score, a smaller threshold is used. Ordered factors or factors with six or more levels are treated
as numerical, so follow the above procedure. Unordered factors with five or less levels are split by
finding a level partition into two subsets via an exhaustive scan of all possibilities, scored, as above,
by Gini impurity or variance drop, depending on the forest type.

The maximal tree depth is hard-coded to 512; a critical sample size that triggers branch termination
into leaf is one for classification and four for regression; this means that regression needs at least
ten objects to be practical. Leaves may be formed from larger samples in same cases, for instance
when no split can be found based on the feature samples; in this case, for classification, random tie
breaking is used.

Fru uses its own PRNG, the pcg32 method by Melissa E. O’Neill, for its capacity to produce rea-
sonably decorrelated streams, which are used to provide reproducibility of the output in parallel
scenarios, regardless of the number of threads. Namely, fru guarantees that the same trees will be
fit for the same input and random seed, although their order may differ. Thus, OOB predictions and
importance scores will be the same up to numerical errors. PRNG is used in training and predic-
tion on new data; generator is seeded from the R generator, thus standard R interface of set. seed
should be used to control it.

Value

The fitted model, an object of a class fru.

References

Breiman L. (2001). Random Forests, Machine Learning 45, 5-32. O’Neil Melissa E. (2014). PCG:
A Family of Simple Fast Space-Efficient Statistically Good Algorithms for Random Number Gener-
ation, HMC-CS-2014-0905.

Examples

set.seed(1)
data(iris)
fru(iris[,-51,1iris[,5], threads=2)

importance Extract importance

Description

Extracts importance from the fru model.
Usage
importance(x, ...)

S3 method for class 'fru'
importance(x, scale = FALSE, ...)

predict.fru 5

Arguments
X A model from which importance scores should be extracted; has to hold impor-
tance scores (importance=TRUE flag passed to fru).
Ignored.
scale If TRUE, importance scores will be scaled their standard deviation over the en-
semble.
Value

A vector of importance scores, in the order and named as columns were in the training data.

Note

Other packages often scale importance by its standard error estimate, thus producing scales impor-
tance values square root of tree count times larger than fru. If you get a "non applicable method"
error, this method was probably shadowed by other package. Use fru: ::importance to call this
function explicitly.

Examples

set.seed(1)

data(iris)
fru(iris[,-5]1,iris[,5], threads=2, importance=TRUE)->model
importance(model)
predict.fru Predict with the fru model
Description

Either predicts a given new data or returns the OOB predictions of the model; optionally, for classi-
fication forests, returns raw votes for each decision class.

Usage
S3 method for class 'fru'
predict(object, x, votes = FALSE, threads = 0L, ...)
Arguments
object A model used for prediction; has to hold the forest (forest=TRUE flag passed

to fru) to make predictions on new data, or has to have OOB scores (0ob=TRUE
flag passed to fru) to return OOB scores.

X Data frame to predict; if missing or NULL, the method will return OOB scores.

6 predict.fru

votes If set to TRUE, changes the output to sums of votes cast by the ensemble on each
class; useful as a prediction confidence score, for instance for ROC analysis.
Only makes sense for classification; passing this flag together with regression
forest will throw an error.

threads Number of threads to use; by default, or when set to 0, fru will try to use all
available computing cores.

Ignored.

Details

If given, new data has to hold the same features as the training data, and the method will match
them by name (order is irrelevant, additional features will be ignored); matched features have to be
of the same type. Moreover, factor features have to have exactly the same levels in the same order
as in training; this will be checked.

The voting in classification case may lead to ties, in which case predict will use PRNG to resolve
them. In the OOB mode, the constant seed is used, so that OOB scores for the same forest model will
always be the same, mimicking the behaviour of other packages which usually calculate predictions
during training and store them with ties resolved at that time. For new data prediction, PRNG is
seeded from R’s random state, so, in principle, ties will be resolved differently on each prediction.
If determinism is desired, it is best to use the votes output in which ties are evident. Regression
is performed using leaf averages, which is a deterministic process (not counting numerical issues
possibly caused by nondeterministic order in which trees are produced when using multi-threading).

The OOB predictions may contain NAs when a given object was not an OOB object of any tree,
which may happen for small ensembles (in particular surely when trees=1). Similarly, the sums of
OOB votes for each object will not sum up to the ensemble size, but will for new data prediction.

By the nature of the method, new data prediction for the training data is usually close to perfect
reproduction of the training decision; it is basically useless for any practical use.

This method checks matches the input structure with the training data structure retained in the
object, which may take some time, especially when data is large or short prediction latency is
required. In that case, one may use the non-exported unsafe_fru_predict function which expects
x to be exactly in the same form as training, jumps straight to the compiled code and returns the
predictions in the raw form (classes are level indices, vote matrix is unrolled, etc.).

Value

For a default of votes=FALSE, a vector with a prediction for either each row of x, or, when not given,
an OOB approximated prediction for each row of the original training data. For votes=TRUE, a data
frame with as many columns as decision classes, rows corresponding to rows of x or training data,
and cells with the counts of votes per each class.

Examples

set.seed(1)

data(iris)

iris[c(TRUE,FALSE),]->iris_train

iris[c(FALSE,TRUE),]->iris_test
fru(iris_train[,-5],iris_train[,5], threads=2, forest=TRUE)->model
print(model)

print.fru 7

table(predict(model,iris_test,threads=2),iris_test$Species)

print.fru Print the fru object

Description

Prints the basic information about the fitted model, in particular the OOB error estimated (if enabled
previously).

Usage
S3 method for class 'fru'
print(x, ...)

Arguments

X Model to print.
Ignored.

Value

Invisibly, the same object x.

solidify Solidify a given fru object

Description

Forces a model to be solidified, so that it would survive through saving into RDS or sending over a

network, etc. The downside is that the forest (and/or OOB scores or importance) will exist twice in

the memory, and this process takes some time. The function converts the object in-place, thanks to

the semantics of external pointers. No-op when given an object that is already serialised, either by

solidify=TRUE flag passed to fru, due to a previous call to solidify or when deserialised.
Usage

solidify(x)

Arguments

X The fru model object.

Value

Invisibly, the same object as x, yet internally modified so that it can be serialised.

Index

extract_forest, 2
fru, 2
importance, 4

predict.fru, 5
print.fru, 7

solidify, 7

	extract_forest
	fru
	importance
	predict.fru
	print.fru
	solidify
	Index

