We here describe how to do regression modelling for cumulative cost \[\begin{align*} {\cal U}(t) & = \int_0^t Z(s) dN(s) \end{align*}\] where \(N(s)\) is a counting process that registers the times at which the cost is realized and accumulated, and \(Z(t)\) is the cost (or marks) at the event times. The counting process can be a mix of random and fixed times. The data would thus be represented in counting process format with the marks/costs going along with the event times. There are many additional uses of such cumulative process, for example, when considering time-lost in a recurrent events setting, that we return to below.
We can estimate the marginal mean of the cumulative process \[\begin{align*} \nu(t) & = E ( {\cal U}(t) ) \end{align*}\] possibly for strata with standard errors based on the derived influence function.
We provide semi-parametric regression modelling using the proportional model \[\begin{align*} E ( {\cal U}(t) | X) & = \Lambda_0(t) \exp( X^T \beta). \end{align*}\]
In addition for a fixed time-point \(t \in [0,\tau]\) we can estimate the mean given covariates \[\begin{align*} E ( {\cal U}(t) | X) & = \exp( X^T \beta) \end{align*}\] where \(\tau\) is some maximum follow-up time.
We also estimate the probability of exceeding thresholds over time \[\begin{align*} P ( {\cal U}(t) > k ) & = \mu_k(t), \end{align*}\] and in the situation with a terminal this is based on a derived competing risks data that keeps track of the competing terminal event.
Regression modelling of this quantity is also possible using competing risks regression models, using for example, the cifreg function of mets.
Considering the HF-action data we simulate a severity score for each event.
library(mets)
data(hfactioncpx12)
hf <- hfactioncpx12
hf$severity <- abs((5+rnorm(741)*2))[hf$id]
proc_design <- mets:::proc_design
## marginal mean using formula
outNZ <- recurrentMarginal(Event(entry,time,status)~strata(treatment)+cluster(id)
+marks(severity),hf,cause=1,death.code=2)
plot(outNZ,se=TRUE)
summary(outNZ,times=3)
#> [[1]]
#> new.time mean se CI-2.5% CI-97.5% strata
#> 682 3 10.47196 0.6334775 9.301149 11.79016 0
#>
#> [[2]]
#> new.time mean se CI-2.5% CI-97.5% strata
#> 601 3 9.692896 0.7092806 8.397821 11.18769 1
outN <- recurrentMarginal(Event(entry,time,status)~strata(treatment)+cluster(id),data=hf,
cause=1,death.code=2)
plot(outN,se=TRUE,add=TRUE)summary(outN,times=3)
#> [[1]]
#> new.time mean se CI-2.5% CI-97.5% strata
#> 682 3 2.118496 0.1138572 1.906692 2.353829 0
#>
#> [[2]]
#> new.time mean se CI-2.5% CI-97.5% strata
#> 601 3 1.924062 0.1216577 1.699801 2.177912 1For comparison we also compute the IPCW estimates with and without marks at time 3, using the linear model, and note that they are identical. Standard errors are however based on different formula that are asymptotically equivalent, and we note that they are very similar.
outNZ3 <- recregIPCW(Event(entry,time,status)~-1+treatment+cluster(id)+marks(severity),data=hf,
cause=1,death.code=2,time=3,cens.model=~strata(treatment),model="lin")
summary(outNZ3)
#> n events
#> 741 1281
#>
#> 741 clusters
#> coeffients:
#> Estimate Std.Err 2.5% 97.5% P-value
#> treatment0 10.47196 0.63344 9.23045 11.71348 0
#> treatment1 9.69290 0.70923 8.30283 11.08297 0
head(iid(outNZ3))
#> [,1] [,2]
#> 1 0.0034815860 0.0000000
#> 2 0.0068980137 0.0000000
#> 3 0.0000000000 0.1248012
#> 4 -0.0134963606 0.0000000
#> 5 -0.0005487192 0.0000000
#> 6 -0.0350784674 0.0000000
outN3 <- recregIPCW(Event(entry,time,status)~-1+treatment+cluster(id),data=hf,cause=1,death.code=2,time=3,
cens.model=~strata(treatment),model="lin")
summary(outN3)
#> n events
#> 741 1281
#>
#> 741 clusters
#> coeffients:
#> Estimate Std.Err 2.5% 97.5% P-value
#> treatment0 2.11850 0.11385 1.89535 2.34164 0
#> treatment1 1.92406 0.12165 1.68564 2.16248 0
head(iid(outN3))
#> [,1] [,2]
#> 1 0.0004542472 0.000000000
#> 2 0.0009756994 0.000000000
#> 3 0.0000000000 0.009301496
#> 4 -0.0029668336 0.000000000
#> 5 -0.0001120764 0.000000000
#> 6 -0.0070693971 0.000000000We also apply the semiparametric proportional cost model with IPCW adjustment:
propNZ <- recreg(Event(entry,time,status)~treatment+marks(severity)+cluster(id),data=hf,cause=1,death.code=2)
summary(propNZ)
#>
#> n events
#> 2132 1391
#>
#> 741 clusters
#> coeffients:
#> Estimate S.E. dU^-1/2 P-value
#> treatment1 -0.099914 0.090172 0.024188 0.2678
#>
#> exp(coeffients):
#> Estimate 2.5% 97.5%
#> treatment1 0.90492 0.75832 1.0798
plot(propNZ,main="Baselines")
GL <- recreg(Event(entry,time,status)~treatment+cluster(id),hf,cause=1,death.code=2)
summary(GL)
#>
#> n events
#> 2132 1391
#>
#> 741 clusters
#> coeffients:
#> Estimate S.E. dU^-1/2 P-value
#> treatment1 -0.110404 0.078656 0.053776 0.1604
#>
#> exp(coeffients):
#> Estimate 2.5% 97.5%
#> treatment1 0.89547 0.76754 1.0447
plot(GL,add=TRUE,col=2)
Those treated have 14 % lower cumulative severity and 11% lower number
of expected events.
Finally, we also estimate the probability of exceeding a cumulative severity at 1,5,10
ooNZ <- prob.exceed.recurrent(Event(entry,time,status)~strata(treatment)+cluster(id)+marks(severity),data=hf,
cause=1,death.code=2,exceed=c(1,5,10,20))
plot(ooNZ,strata=1)
plot(ooNZ,strata=2,add=TRUE)summary(ooNZ,times=3)
#> $`0`
#> $`0`$prob
#> times
#> 3 2.99865085
#> N<1 3 0.06295909
#> exceed>=1 3 0.93704091
#> exceed>=5 3 0.90309925
#> exceed>=10 3 0.76036644
#> exceed>=20 3 0.44547988
#>
#> $`0`$se
#> times
#> 3 2.99865085
#> N<1 3 0.02704848
#> exceed>=1 3 0.02704848
#> exceed>=5 3 0.03045582
#> exceed>=10 3 0.04221875
#> exceed>=20 3 0.05065399
#>
#> $`0`$lower
#> times
#> [1,] 3 2.9986509
#> [2,] 3 0.1145014
#> [3,] 3 0.8854986
#> [4,] 3 0.8453369
#> [5,] 3 0.6819627
#> [6,] 3 0.3564847
#>
#> $`0`$upper
#> times
#> [1,] 3 2.998650853
#> [2,] 3 0.008416702
#> [3,] 3 0.991583298
#> [4,] 3 0.964808502
#> [5,] 3 0.847784047
#> [6,] 3 0.556692410
#>
#>
#> $`1`
#> $`1`$prob
#> times
#> 3 2.99865085
#> N<1 3 0.01781227
#> exceed>=1 3 0.98218773
#> exceed>=5 3 0.95475115
#> exceed>=10 3 0.81657966
#> exceed>=20 3 0.53639776
#>
#> $`1`$se
#> times
#> 3 2.998650853
#> N<1 3 0.009437445
#> exceed>=1 3 0.009437445
#> exceed>=5 3 0.014947541
#> exceed>=10 3 0.035245302
#> exceed>=20 3 0.057003157
#>
#> $`1`$lower
#> times
#> [1,] 3 2.99865085
#> [2,] 3 0.03613623
#> [3,] 3 0.96386377
#> [4,] 3 0.92589943
#> [5,] 3 0.75034139
#> [6,] 3 0.43554146
#>
#> $`1`$upper
#> times
#> [1,] 3 2.9986509
#> [2,] 3 0.0000000
#> [3,] 3 1.0000000
#> [4,] 3 0.9845019
#> [5,] 3 0.8886653
#> [6,] 3 0.6606089The cumulative time lost for recurrent events has been defined as \[\begin{align*} {\cal M}(t) = E[ \int_0^\tau (\tau-s) dN(s) ] = \int_0^\tau \mu(s) ds \end{align*}\] where \(\mu(t) = E( N(t) )\) is the marginal mean of the recurrent events at time \(t\).
hf$lost5 <- 5-hf$time
RecLost <- recregIPCW(Event(entry,time,status)~-1+treatment+cluster(id)+marks(lost5),data=hf,
cause=1,death.code=2,time=5,cens.model=~strata(treatment),model="lin")
summary(RecLost)
#> n events
#> 741 1391
#>
#> 741 clusters
#> coeffients:
#> Estimate Std.Err 2.5% 97.5% P-value
#> treatment0 8.58300 0.42951 7.74118 9.42482 0
#> treatment1 7.66234 0.46400 6.75292 8.57177 0
head(iid(RecLost))
#> [,1] [,2]
#> 1 0.0016920221 0.00000000
#> 2 0.0073388996 0.00000000
#> 3 0.0000000000 0.02120478
#> 4 -0.0095548150 0.00000000
#> 5 -0.0005696809 0.00000000
#> 6 -0.0201750011 0.00000000sessionInfo()
#> R version 4.5.2 (2025-10-31)
#> Platform: aarch64-apple-darwin25.1.0
#> Running under: macOS Tahoe 26.2
#>
#> Matrix products: default
#> BLAS: /Users/kkzh/.asdf/installs/r/4.5.2/lib/R/lib/libRblas.dylib
#> LAPACK: /Users/kkzh/.asdf/installs/r/4.5.2/lib/R/lib/libRlapack.dylib; LAPACK version 3.12.1
#>
#> locale:
#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#>
#> time zone: Europe/Copenhagen
#> tzcode source: internal
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] timereg_2.0.7 survival_3.8-3 mets_1.3.9
#>
#> loaded via a namespace (and not attached):
#> [1] cli_3.6.5 knitr_1.50 rlang_1.1.6
#> [4] xfun_0.54 jsonlite_2.0.0 future.apply_1.20.1
#> [7] listenv_0.10.0 lava_1.8.3 htmltools_0.5.8.1
#> [10] sass_0.4.10 rmarkdown_2.30 grid_4.5.2
#> [13] evaluate_1.0.5 jquerylib_0.1.4 fastmap_1.2.0
#> [16] numDeriv_2016.8-1.1 yaml_2.3.10 mvtnorm_1.3-3
#> [19] lifecycle_1.0.4 compiler_4.5.2 codetools_0.2-20
#> [22] ucminf_1.2.2 Rcpp_1.1.1 future_1.68.0
#> [25] lattice_0.22-7 digest_0.6.39 R6_2.6.1
#> [28] parallelly_1.46.1 parallel_4.5.2 splines_4.5.2
#> [31] Matrix_1.7-4 bslib_0.9.0 tools_4.5.2
#> [34] RcppArmadillo_15.2.3-1 globals_0.18.0 cachem_1.1.0