A toolkit containing statistical analysis models motivated by multivariate forms of the Conway-Maxwell-Poisson (COM-Poisson) distribution for flexible modeling of multivariate count data, especially in the presence of data dispersion. Currently the package only supports bivariate data, via the bivariate COM-Poisson distribution described in Sellers et al. (2016) <doi:10.1016/j.jmva.2016.04.007>. Future development will extend the package to higher-dimensional data.
Version: | 1.1 |
Imports: | stats, numDeriv |
Published: | 2018-06-29 |
DOI: | 10.32614/CRAN.package.multicmp |
Author: | Kimberly Sellers [aut], Darcy Steeg Morris [aut], Narayanaswamy Balakrishnan [aut], Diag Davenport [aut, cre] |
Maintainer: | Diag Davenport <diag.davenport at gmail.com> |
BugReports: | https://github.com/diagdavenport/multicmp/issues |
License: | GPL-3 |
URL: | http://dx.doi.org/10.1016/j.jmva.2016.04.007 |
NeedsCompilation: | no |
CRAN checks: | multicmp results |
Reference manual: | multicmp.pdf |
Package source: | multicmp_1.1.tar.gz |
Windows binaries: | r-devel: multicmp_1.1.zip, r-release: multicmp_1.1.zip, r-oldrel: multicmp_1.1.zip |
macOS binaries: | r-devel (arm64): multicmp_1.1.tgz, r-release (arm64): multicmp_1.1.tgz, r-oldrel (arm64): multicmp_1.1.tgz, r-devel (x86_64): multicmp_1.1.tgz, r-release (x86_64): multicmp_1.1.tgz, r-oldrel (x86_64): multicmp_1.1.tgz |
Old sources: | multicmp archive |
Please use the canonical form https://CRAN.R-project.org/package=multicmp to link to this page.