The partitions
package provides efficient vectorized
code to enumerate solutions to various integer equations. For example,
we might note that
and we might want to list all seven in a consistent format (note here that each sum is written in nonincreasing order, so
You can install the released version of wedge from CRAN with:
# install.packages("partitions") # uncomment this to install the package
library("partitions")
partitions
package in useTo enumerate the partitions of 5:
parts(5)
#>
#> [1,] 5 4 3 3 2 2 1
#> [2,] 0 1 2 1 2 1 1
#> [3,] 0 0 0 1 1 1 1
#> [4,] 0 0 0 0 0 1 1
#> [5,] 0 0 0 0 0 0 1
(each column is padded with zeros). Of course, larger integers have
many more partitions and in this case we can use
summary()
:
summary(parts(16))
#>
#> [1,] 16 15 14 14 13 13 13 12 12 12 ... 3 2 2 2 2 2 2 2 2 1
#> [2,] 0 1 2 1 3 2 1 4 3 2 ... 1 2 2 2 2 2 2 2 1 1
#> [3,] 0 0 0 1 0 1 1 0 1 2 ... 1 2 2 2 2 2 2 1 1 1
#> [4,] 0 0 0 0 0 0 1 0 0 0 ... 1 2 2 2 2 2 1 1 1 1
#> [5,] 0 0 0 0 0 0 0 0 0 0 ... 1 2 2 2 2 1 1 1 1 1
#> [6,] 0 0 0 0 0 0 0 0 0 0 ... 1 2 2 2 1 1 1 1 1 1
#> [7,] 0 0 0 0 0 0 0 0 0 0 ... 1 2 2 1 1 1 1 1 1 1
#> [8,] 0 0 0 0 0 0 0 0 0 0 ... 1 2 1 1 1 1 1 1 1 1
#> [9,] 0 0 0 0 0 0 0 0 0 0 ... 1 0 1 1 1 1 1 1 1 1
#> [10,] 0 0 0 0 0 0 0 0 0 0 ... 1 0 0 1 1 1 1 1 1 1
#> [11,] 0 0 0 0 0 0 0 0 0 0 ... 1 0 0 0 1 1 1 1 1 1
#> [12,] 0 0 0 0 0 0 0 0 0 0 ... 1 0 0 0 0 1 1 1 1 1
#> [13,] 0 0 0 0 0 0 0 0 0 0 ... 1 0 0 0 0 0 1 1 1 1
#> [14,] 0 0 0 0 0 0 0 0 0 0 ... 1 0 0 0 0 0 0 1 1 1
#> [15,] 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 1
#> [16,] 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 1
Sometimes we want to find the unequal partitions (that is, partitions without repeats):
summary(diffparts(16))
#>
#> [1,] 16 15 14 13 13 12 12 11 11 11 ... 8 8 7 7 7 7 7 6 6 6
#> [2,] 0 1 2 3 2 4 3 5 4 3 ... 5 4 6 6 5 5 4 5 5 4
#> [3,] 0 0 0 0 1 0 1 0 1 2 ... 2 3 3 2 4 3 3 4 3 3
#> [4,] 0 0 0 0 0 0 0 0 0 0 ... 1 1 0 1 0 1 2 1 2 2
#> [5,] 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 1
Sometimes we have restrictions on the partition. For example, to
enumerate the partitions of 9 into 5 parts we would use
restrictedparts()
:
summary(restrictedparts(9,5))
#>
#> [1,] 9 8 7 6 5 7 6 5 4 5 ... 5 4 4 3 3 5 4 3 3 2
#> [2,] 0 1 2 3 4 1 2 3 4 2 ... 2 3 2 3 2 1 2 3 2 2
#> [3,] 0 0 0 0 0 1 1 1 1 2 ... 1 1 2 2 2 1 1 1 2 2
#> [4,] 0 0 0 0 0 0 0 0 0 0 ... 1 1 1 1 2 1 1 1 1 2
#> [5,] 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 1 1 1 1 1
and if we want the partitions of 9 into parts not exceeding 5 we would use the conjugate of this:
summary(conjugate(restrictedparts(9,5)))
#>
#> [1,] 1 2 2 2 2 3 3 3 3 3 ... 4 4 4 4 4 5 5 5 5 5
#> [2,] 1 1 2 2 2 1 2 2 2 3 ... 2 2 3 3 4 1 2 2 3 4
#> [3,] 1 1 1 2 2 1 1 2 2 1 ... 1 2 1 2 1 1 1 2 1 0
#> [4,] 1 1 1 1 2 1 1 1 2 1 ... 1 1 1 0 0 1 1 0 0 0
#> [5,] 1 1 1 1 1 1 1 1 0 1 ... 1 0 0 0 0 1 0 0 0 0
#> [6,] 1 1 1 1 0 1 1 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
#> [7,] 1 1 1 0 0 1 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
#> [8,] 1 1 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
#> [9,] 1 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
Sometimes we have restrictions on each element of a partition and in
this case we would use blockparts()
:
summary(blockparts(1:6,10))
#>
#> [1,] 1 1 1 1 0 1 1 1 0 1 ... 0 1 0 0 0 1 0 0 0 0
#> [2,] 2 2 2 1 2 2 2 1 2 2 ... 0 0 1 0 0 0 1 0 0 0
#> [3,] 3 3 2 3 3 3 2 3 3 1 ... 2 0 0 1 0 0 0 1 0 0
#> [4,] 4 3 4 4 4 2 3 3 3 4 ... 0 1 1 1 2 0 0 0 1 0
#> [5,] 0 1 1 1 1 2 2 2 2 2 ... 2 2 2 2 2 3 3 3 3 4
#> [6,] 0 0 0 0 0 0 0 0 0 0 ... 6 6 6 6 6 6 6 6 6 6
which would show all solutions to
Above we considered
compositions(4)
#>
#> [1,] 4 1 2 1 3 1 2 1
#> [2,] 0 3 2 1 1 2 1 1
#> [3,] 0 0 0 2 0 1 1 1
#> [4,] 0 0 0 0 0 0 0 1
A set of 4 elements, WLOG setparts()
function:
setparts(4)
#>
#> [1,] 1 1 1 1 2 1 1 1 1 1 1 2 2 2 1
#> [2,] 1 1 1 2 1 2 1 2 2 1 2 1 1 3 2
#> [3,] 1 2 1 1 1 2 2 1 3 2 1 3 1 1 3
#> [4,] 1 1 2 1 1 1 2 2 1 3 3 1 3 1 4
In the above, column 2 3 1 1
would correspond to the set
partition
Knuth deals with multisets (that is, a generalization of the concept
of set, in which elements may appear more than once) and gives an
algorithm for enumerating a multiset. His simplest example is the
permutations of
multiset(c(1,2,2,3))
#>
#> [1,] 1 1 1 2 2 2 2 2 2 3 3 3
#> [2,] 2 2 3 1 1 2 2 3 3 1 2 2
#> [3,] 2 3 2 2 3 1 3 1 2 2 1 2
#> [4,] 3 2 2 3 2 3 1 2 1 2 2 1
It is possible to answer questions such as the permutations of the word “pepper”:
library("magrittr")
"pepper" %>%
strsplit("") %>%
%>%
unlist match(letters) %>%
%>%
multiset apply(2,function(x){x %>% `[`(letters,.) %>% paste(collapse="")})
#> [1] "eepppr" "eepprp" "eeprpp" "eerppp" "epeppr" "epeprp" "eperpp" "eppepr"
#> [9] "epperp" "eppper" "epppre" "epprep" "epprpe" "eprepp" "eprpep" "eprppe"
#> [17] "ereppp" "erpepp" "erppep" "erpppe" "peeppr" "peeprp" "peerpp" "pepepr"
#> [25] "peperp" "pepper" "peppre" "peprep" "peprpe" "perepp" "perpep" "perppe"
#> [33] "ppeepr" "ppeerp" "ppeper" "ppepre" "pperep" "pperpe" "pppeer" "pppere"
#> [41] "pppree" "ppreep" "pprepe" "pprpee" "preepp" "prepep" "preppe" "prpeep"
#> [49] "prpepe" "prppee" "reeppp" "repepp" "reppep" "repppe" "rpeepp" "rpepep"
#> [57] "rpeppe" "rppeep" "rppepe" "rpppee"
A riffle()
:
riffle(2,4)
#>
#> [1,] 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3
#> [2,] 2 3 3 3 3 1 1 1 1 4 4 4 4 4 4
#> [3,] 3 2 4 4 4 2 4 4 4 1 1 1 5 5 5
#> [4,] 4 4 2 5 5 4 2 5 5 2 5 5 1 1 6
#> [5,] 5 5 5 2 6 5 5 2 6 5 2 6 2 6 1
#> [6,] 6 6 6 6 2 6 6 6 2 6 6 2 6 2 2
To enumerate all riffles with sizes genrif()
:
genrif(1:3)
#>
#> [1,] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4
#> [2,] 2 2 2 2 4 4 4 4 4 4 1 1 1 1 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 2
#> [3,] 3 4 4 4 2 2 2 5 5 5 3 4 4 4 1 4 4 4 1 1 1 3 3 3 5 5 5 5 5 5 2 2 2 5 5 5 1
#> [4,] 4 3 5 5 3 5 5 2 2 6 4 3 5 5 4 1 5 5 3 5 5 1 5 5 1 1 3 3 6 6 3 5 5 2 2 6 3
#> [5,] 5 5 3 6 5 3 6 3 6 2 5 5 3 6 5 5 1 6 5 3 6 5 1 6 3 6 1 6 1 3 5 3 6 3 6 2 5
#> [6,] 6 6 6 3 6 6 3 6 3 3 6 6 6 3 6 6 6 1 6 6 3 6 6 1 6 3 6 1 3 1 6 6 3 6 3 3 6
#>
#> [1,] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [2,] 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5
#> [3,] 1 1 3 3 3 5 5 5 5 5 5 1 1 1 2 2 2 2 2 2 6 6 6
#> [4,] 5 5 1 5 5 1 1 3 3 6 6 2 2 6 1 1 3 3 6 6 1 2 2
#> [5,] 3 6 5 1 6 3 6 1 6 1 3 3 6 2 3 6 1 6 1 3 2 1 3
#> [6,] 6 3 6 6 1 6 3 6 1 3 1 6 3 3 6 3 6 1 3 1 3 3 1
For more detail, see the package vignettes
vignette("partitionspaper")
vignette("setpartitions")
vignette("scrabble")