Package ‘ribiosArg’

February 20, 2026

Type Package

Title Argument Handling for Command-Line, Stand-Alone R Scripts
Version 1.5.0

Date 2026-01-24

Description Provides functions to handle command-line arguments for R
scripting. It enables building stand-alone R programs that accept and
parse command-line options in 'BIOS' style.

Zhang (2025) <https://github.com/bedapub/ribiosArg>.

Depends R (>= 3.4.0), ribiosUtils
LinkingTo ribiosUtils

Imports utils

Suggests testthat

License GPL-3

URL https://github.com/bedapub/ribiosArg

BugReports https://github.com/bedapub/ribiosArg/issues
Encoding UTF-8

LazyLoad yes

RoxygenNote 7.3.3

NeedsCompilation yes

Author Jitao David Zhang [aut, cre, ctb] (ORCID:
<https://orcid.org/0000-0002-3085-0909>),
Balazs Banfai [ctb]

Maintainer Jitao David Zhang <jitao_david.zhang@roche.com>
Repository CRAN
Date/Publication 2026-02-20 10:40:20 UTC

https://github.com/bedapub/ribiosArg
https://github.com/bedapub/ribiosArg
https://github.com/bedapub/ribiosArg/issues
https://orcid.org/0000-0002-3085-0909

2 argGet
Contents
argGet L e e 2
argGetPos L 3
arglsInit L 4
argParse e 4
EXISLATEZ . . o o e e e e 6
GELATE . . o e e 6
isDebugging L e 7
isIntDebugging oL 8
makeFactor L 8
parseFactor L 9
parseFiles L e e e e e 10
parseNumVec L e e e e 11
parsePairs L e e 12
ParseStringso e e e 13
TDIOSATEZ . . . o o 14
seriptInit oL 14
scriptName e e e e e e e 15
scriptPath L 16
scriptSkeleton oL e 17
setDebug 17
unsetDebug 18
Index 19
argGet Parse an argument
Description
Get the value of an named argument
Usage
argGet(opt, default = NULL, choices = NULL)
Arguments
opt name of the argument to be parsed
default default values to be returned if the argument is not provided
choices a character vector of accepted values; if a string outside the vector is provided,
the function will stop and print error message
Details

The parsing is performed at C-level. It is an abbreiviation of argGetPos(opt, ind=1, default=NULL,
choices=NULL)

argGetPos 3

Value

A character string representing the value of the argument

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

argParse, argGetPos, and argPresent

Examples

argGet("infile")

argGetPos Parse an argument with the given position

Description

Get the value of an named argument with the given position

Usage

argGetPos(opt, ind = 1L, default = NULL, choices = NULL)

Arguments
opt name of the argument to be parsed
ind index of the argument to be parsed, starting from 1.
default default values to be returned if the argument is not provided
choices a character vector of accepted values; if a string outside the vector is provided,
the function will stop and print error message
Details

The parsing is performed at C-level. If the argument accepts only one value, users can also call
argGet(opt, default=NULL, choices=NULL)

Value

A character string representing the value of the argument

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

4 argParse
See Also

argParse, argGet, and argPresent

Examples

argGetPos("thresholds”, ind=2)

arglsInit Check whether the argument parser has been initialized

Description

Check whether the argument parser has been initialized

Usage

argIsInit()

Value

Logical, TRUE if argParse has been called, FALSE otherwise.

argParse Parser of command-line parameters in BIOS style

Description

Parser of command-line parameters in BIOS style

Test whether the given option is present in the command line or not

Usage

argParse(optargs, regargs, usage = paste(scriptName(), "-h"), strict = TRUE)

argPresent (opt)

argParse 5

Arguments
optargs String describing optional arguments. Syntax: <optname1>[,paramcnt1] <optname2>[,paramcnt2]..
Example: ‘“verbose outfile,1” means the command line has the syntax prog
[-verbose] [outfile name]. It can be an empty string to express “no options”.
The value for parament is 0.
reqargs String describining required arguments. Syntax: <argnamel1> <argname2>. ...
Example: “infile outfile” means the command line has the syntax prog [-infile
Jinfile [-outfile Jcoutfile. Even if it is empty, it is checked that at least
one non-optional value is given.
usage A character string to be printed if the command-line option parsing fails
strict Logical, are extra un-prefixed parameters allowed? If set to TRUE, the un-prefixed
parameters (which must be at the end of the command line) will be returned as
a character vector.
opt Character string, option name
Details

argParse must be called before argGet,argGetPos , argPresent, or argGetDefault. It checks
whether the command line syntax agrees with the specification of optargs and regargs. If not, the
usage message is printed and the program exists.

argPresent returns a boolean value indicating whether the option is present or not.

If the syntax was found correct, argGetPos can be called to fetch the indth value of the option opt
(indexing from 1). For instance, if the following option -ranges 3 5 is defined, argGetPos(“range”,
2) returns 5. argGet is a shortcut to fetch the first element. If the opt is missing, the default value
will be returned.

Value

argParse is used for the side effects. If strict is set to TRUE, an invisible NULL is returned;
otherwise, extra un-prefixed parameters are returned as an invisible character vector

argGet and argGetPos returns a character string. argPresent returns a boolean value.

In case of any error (wrong syntax, or not-existing option) the R session quits while printing the
error message.

Examples
argParse("verbose threshold,2”, "infile outfile”,
usage="prog [-infile Jinfile [-outfile Joutfile [-verbose] [-threshold MIN MAX]")
argIsInit()

argPresent("verbose")

6 getArg

existArg Test if named arguments exists

Description

Test if named arguments exists

Usage

existArg(args)

Arguments

args Argument names, without leading minus sign

Details
Options are those arguments with a leading minus sign (e.g. "-opt"). This function tells whether
queried options exist in the argument list.

Value

A vector of logicals, indicating whether the arguments exist

See Also

getArg

Examples

nan

comm <- paste(c("Rscript --vanilla -e”, , "library(ribiosArg);",
"existArg(c(\"opt\”, \"opt2\"”, \"opt3\"))", "'",
"-opt abc -opt3”), collapse=" ")

system(comm)

getArg An R-implementation of getting named aguments

Description

This function is out-dated. Please use argparse instead.

Usage

getArg(args, onlyArg = FALSE, missingArg = FALSE)

isDebugging 7

Arguments
args Character strings, named arguments
onlyArg Any type, What value should be returned if only the option is available and no
value has been provided
missingArg Any type, What value should be returned if the option is not available
Details

Options are those arguments with a leading minus sign. They can have one or more values following
them, which will be taken as the value of the option. If no such values are availble, user could
decide how to interpret the option by setting the onlyArg parameter. Similarly, missing options can
be handled by missingArg

From version 1.0.3 onlyArg and missingArg accepts NULL as inputs.

Value

A list when more than one option were queried; or a vector if only one option was queried.

See Also

existArg

isDebugging Test whether the environment is set for debugging

Description

Test whether the environment is set for debugging

Usage

isDebugging()

Value

A logical value

See Also

setDebug and unsetDebug

Examples

isDebugging()
unsetDebug()
isDebugging()
setDebug()

8 makeFactor

isIntDebugging Test whether the environment is set for debugging, or it’s an interactive
session

Description

Test whether the environment is set for debugging, or it’s an interactive session

Usage

isIntDebugging()

Value

A logical value

See Also

isDebugging

makeFactor Make a factor

Description

Make a factor

Usage

makeFactor(groups, levels = NULL, make.names = TRUE, verbose = FALSE)

Arguments
groups Character strings
levels Character vector, indicating strings
make.names Should names be converted to adhere to the rule of variable names in R
verbose Logical vector
Value

A factor with the specified levels.

parseFactor 9

Examples

makeFactor(c("A", "B", "C", "C", "A"), levels=LETTERS[3:1])
makeFactor(c("A 1", "B 2", "C 3", "C 3", "A 1"),
levels=c("A 1", "C 3", "B 2"),
make . names=TRUE)
makeFactor(c("A 1", "B 2", "C 3", "C 3", "A 1"),
levels=c("A 1", "C 3", "B 2"),
make . names=FALSE)
makeFactor(c("A 1", "B 2", "C 3", "C 3", "A 1"),
levels=c("A 1", "C 3", "B 2"),
make . names=FALSE, verbose=TRUE)

parseFactor Parse a character string into factor

Description

Parse a character string into factor

Usage
parseFactor(str, rlevels = NULL, make.names = TRUE, collapse = ",")
Arguments
str A character string giving groups
rlevels A character string giving levels
make.names Logical, should names be converted to adhere to the rule of variable names in R
collapse Character used in relevels to collapse different levels
Value

A factor parsed from the input string with the specified levels.

Examples

parseFactor("A,B,C,B,A", rlevels="A,B,C")

rgroup <- "A,B,C,D,B,C,A,D,B"
rlevels <- "D,A,B,C"
parseFactor(rgroup, rlevels)

groups <- c("ATest”, "Control”, "Control”, "ATest")
levels <- c("Control”, "ATest")
makeFactor(groups, levels)

if 'groups' is a factor and 'levels' NULL or missing, its levels are respected
groups <- factor(c(”B", "C", "A", "D"), levels=c("D","C","A","B"))

10 parseFiles

makeFactor(groups)

groups <- c("ATest”, "Control”, "Control”, "ATest")
levels <- c("Control”, "ATest”, "Unknown")
makeFactor(groups, levels)

groups <- c("ATest”, "Control”, "Control"”, "ATest"”, "BTest")
levels <- c("Control”, "ATest")
try(makeFactor(groups, levels))

parseFiles Farse files from command-line options

Description

Parse files from command line option, which can be (1) a string vector of files, (2) a file listing input
files (e.g. pointer file), (3) a directory, or (4) a zip/tar/gz file (determined by suffix). In the later two
cases, file patterns can be specified.

Usage

parseFiles(
str,
sep = ",",
pattern = NULL,
recursive = TRUE,
ignore.case = TRUE

)

Arguments
str A character string
sep Seperator used in the string
pattern Pattern string, if given, only files matching the pattern will be returned
recursive In cse of directory or compressed files, whether files should be found recursively
ignore.case In case of directory or compressed files, whether case should be ignored

Value

A character vector of file paths.

Note

In case of compressed files, a temp dir will be created: the user should take care of cleaning up!

parseNum Vec 11

parseNumVec Parse a character string into a numveric vector

Description

Numeric vectors can be given as arguments in two ways: (1) separated by blanks or (2) separated
by other common separators, such as comma (,). This function parses a string, or a string vector
into a numeric vector of expected length. In addition it is failure safe: user can specify the return
value in case the parsing was not successful,

Usage
parseNumVec(str, expLen = 2, failval = c(5, 5), sep = ",")
Arguments
str A character string
explLen Integer or NULL, Expected length of the numeric vector. When set to NULL, the
numeric vector can be of variable length.
failval If the parsing failed (for example length not correct, or non-numeric values were
provided, this value will be returned
sep Separator in the character string, default ","
Details

The input value mostly comes from return values of the argGet function.

Value

A numeric vector of the parsed values, or failVal if parsing fails.

See Also

argGet

Examples

parseNumVec("3,7,9", expLen=3)

12 parsePairs

parsePairs Parse key-value pairs from a character string

Description

The function parses parameters in the form of KEY1=VAL1,KEY2=VAL2,KEY3=VAL3 into data. frame.

Usage
parsePairs(
str,
collapse = ",",
sep = ”:H ,
colnames = c("key", "value"),
trim = TRUE,
)
Arguments
str Character string
collapse Collapse character used in the string
sep Seperator used in the string
colnames Column names of the returned data. frame
trim Logical, whether additional spaces should be trimmed
Further parameters passed to trim for fine-tuning of trimming
Details

If input string is NULL, the function returns NULL. This can be useful in case the parameter is optional
and not specified.
Value

A data. frame containing keys and values

See Also

parseStrings

Examples

non n

parsePairs("A=3,B=4,C=5", collapse=",", sep="=")
parsePairs("A:3|B:4|C:5", collapse="|", sep=":")

parseStrings 13

parseStrings Parse a character string into string vectors

Description

This function parses collapsed multiple options into a vector of character strings. Each option is
optionally trimmed of leading and tailing empty spaces given by trim. See examples.

Usage
parseStrings(str, collapse = ",", trim = TRUE, ...)
Arguments
str A character string to be parsed
collapse Character(s) used in the character string to concatenate strings
trim Logical, whether additional spaces should be trimmed
Further parameters passed to trim for fine-tuning of trimming
Details

In case of multiple separators, they can be given by concatenating with piple signs, e.g. , |\t. If
input string is NULL, the function returns NULL. This can be useful in case the parameter is optional
and not specified.

Value

A vector of character strings

See Also

strsplit, trim

Examples

parseStrings(”veni, vidi, vici”)
parseStrings(”veni, vidi, vici”, trim=FALSE)
parseStrings(”I came, I saw, I conquered”)

options are trimmed
parseStrings(”a,b,\tc,d\n")

it works also with only one option
parseStrings(”a")

more than one separators
parseStrings(”a,b,c;d", collapse=",|;")

14 scriptInit

ribiosArg ribioslO ribioslO provides Command-line argument handling for R
scripting

Description

ribioslO ribiosIO provides Command-line argument handling for R scripting

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

scriptlnit Prepare the environment for a script

Description

This function is called at the beginning of an Rscript, in order to prepare the R environment to run
in a script setting.

Usage

scriptInit()

Value

No return value, called for side effects.

Examples

scriptInit()

scriptName 15

scriptName Returns the file name of the Rscript being executed

Description

Get the file name of the Rscript that is currently being executed. The function is mainly called by
stand-alone Rscripts.

Usage

scriptName()

Details

The name is determined by the --file/-f option in the command line.

When the R session was not initiated by a Rscript (i.e. there is no --file or -f option in the
command line), NULL is returned.

Note that the function supports calling Rscript via --file or -f with R. This applies to cases where
a Rscript, marked as executable, and is called from the command line.

Value

A character string containing the file name of the Rscript.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

commandArgs and getArg

Examples

scriptName()

16 scriptPath

scriptPath Returns the path of the Rscript being executed

Description

Get the normalised path of the Rscript that is currently being executed. The function is mainly
called by stand-alone Rscripts.

Usage

scriptPath()

Details

The name is determined by the --file/-f option in the command line.

When the R session was not initiated by a Rscript (i.e. there is no --file or -f option in the
command line), NULL is returned.

Note that the function supports calling Rscript via --file or -f with R. This applies to cases where
a Rscript, marked as executable, and is called from the command line.

Value

A character string containing the normalised path of the Rscript.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

scriptName

Examples

scriptPath()

scriptSkeleton 17

scriptSkeleton Generate a Rscript with its skeleton

Description

Generate a Rscript with its skeleton

Usage

scriptSkeleton(file)
Arguments

file Output file. Use ‘file=stdout()‘ to write the output to standard output.
Value

Invisibly returns the character vector of skeleton lines. Called for its side effect of writing to file.

Examples

scriptSkeleton(file = file.path(tempdir(), "myscript.R"))

setDebug Set the enrivonment for debugging

Description

Set the enrivonment for debugging

Usage

setDebug()

Value

A logical value, whether the setting was susccessful or not

See Also

isDebugging and unsetDebug

18 unsetDebug

unsetDebug Remove the debugging flag of the the enrivonment

Description

Remove the debugging flag of the the enrivonment

Usage
unsetDebug()

Value

A logical value, whether the removal was successful or not

See Also

isDebugging and setDebug

Index

argGet, 2,4, 11
argGetPos, 3,3
arglsinit, 4
argParse, 3, 4,4
argPresent, 3, 4
argPresent (argParse), 4

commandArgs, 15
existArg, 6,7
getArg, 6,6, 15

initScript (scriptlnit), 14
isDebugging, 7,8, 17, 18
isIntDebugging, 8

makeFactor, 8

parseFactor, 9
parseFiles, 10
parseNumVec, 11
parsePairs, 12
parseStrings, 12, 13

ribiosArg, 14

scriptInit, 14
scriptName, 15, 16
scriptPath, 16
scriptSkeleton, 17
setDebug, 7, 17, 18
strsplit, I3

trim, 12, 13

unsetDebug, 7, 17, 18

19

	argGet
	argGetPos
	argIsInit
	argParse
	existArg
	getArg
	isDebugging
	isIntDebugging
	makeFactor
	parseFactor
	parseFiles
	parseNumVec
	parsePairs
	parseStrings
	ribiosArg
	scriptInit
	scriptName
	scriptPath
	scriptSkeleton
	setDebug
	unsetDebug
	Index

