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Abstract

Simultaneous inference is a common problem in many areas of application. If

multiple null hypotheses are tested simultaneously, the probability of rejecting er-

roneously at least one of them increases beyond the pre-specified significance level.

Simultaneous inference procedures have to be used which adjust for multiplicity and

thus control the overall type I error rate. In this paper we describe simultaneous infer-

ence procedures in general parametric models, where the experimental questions are

specified through a linear combination of elemental model parameters. The frame-

work described here is quite general and extends the canonical theory of multiple

comparison procedures in ANOVA models to linear regression problems, generalized

linear models, linear mixed effects models, the Cox model, robust linear models, etc.

Several examples using a variety of different statistical models illustrate the breadth
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of the results. For the analyses we use the R add-on package multcomp, which pro-

vides a convenient interface to the general approach adopted here.

Key words: multiple tests, multiple comparisons, simultaneous confidence intervals,
adjusted p-values, multivariate normal distribution, robust statistics.

1 Introduction

Multiplicity is an intrinsic problem of any simultaneous inference. If each of k, say, null
hypotheses is tested at nominal level α, the overall type I error rate can be substantially
larger than α. That is, the probability of at least one erroneous rejection is larger than
α for k ≥ 2. Common multiple comparison procedures adjust for multiplicity and thus
ensure that the overall type I error remains below the pre-specified significance level α.
Examples of such multiple comparison procedures include Dunnett’s many-to-one compar-
isons, Tukey’s all-pairwise comparisons, sequential pairwise contrasts, comparisons with
the average, changepoint analyses, dose-response contrasts, etc. These procedures are all
well established for classical regression and ANOVA models allowing for covariates and/or
factorial treatment structures with i.i.d.˜normal errors and constant variance, see Bretz
et˜al. (2008) and the references therein. For a general reading on multiple comparison
procedures we refer to Hochberg and Tamhane (1987) and Hsu (1996).

In this paper we aim at a unified description of simultaneous inference procedures in para-
metric models with generally correlated parameter estimates. Each individual null hypothe-
sis is specified through a linear combination of elemental model parameters and we allow for
k of such null hypotheses to be tested simultaneously, regardless of the number of elemental
model parameters p. The general framework described here extends the current canoni-
cal theory with respect to the following aspects: (i) model assumptions such as normality
and homoscedasticity are relaxed, thus allowing for simultaneous inference in generalized
linear models, mixed effects models, survival models, etc.; (ii) arbitrary linear functions of
the elemental parameters are allowed, not just contrasts of means in AN(C)OVA models;
(iii) computing the reference distribution is feasible for arbitrary designs, especially for
unbalanced designs; and (iv) a unified implementation is provided which allows for a fast
transition of the theoretical results to the desks of data analysts interested in simultaneous
inferences for multiple hypotheses.

Accordingly, the paper is organized as follows. Section˜2 defines the general model and ob-
tains the asymptotic or exact distribution of linear functions of elemental model parameters
under rather weak conditions. In Section˜3 we describe the framework for simultaneous
inference procedures in general parametric models. An overview about important applica-
tions of the methodology is given in Section˜4 followed by a short discussion of the software
implementation in Section˜5. Most interesting from a practical point of view is Section˜6
where we analyze four rather challenging problems with the tools developed in this paper.



2 Model and Parameters

In this section we introduce the underlying model assumptions and derive some asymptotic
results necessary in the subsequent sections. The results from this section form the basis
for the simultaneous inference procedures described in Section˜3.

Let M((Z1, . . . ,Zn), θ, η) denote a semi-parametric statistical model. The set of n obser-
vations is described by (Z1, . . . ,Zn). The model contains fixed but unknown elemental
parameters θ ∈ R

p and other (random or nuisance) parameters η. We are primarily in-
terested in the linear functions ϑ := Kθ of the parameter vector θ as specified through
the constant matrix K ∈ R

k,p. In what follows we describe the underlying model assump-
tions, the limiting distribution of estimates of our parameters of interest ϑ, as well as the
corresponding test statistics for hypotheses about ϑ and their limiting joint distribution.

Suppose θ̂n ∈ R
p is an estimate of θ and Sn ∈ R

p,p is an estimate of cov(θ̂n) with

anSn
P

−→ Σ ∈ R
p,p (1)

for some positive, nondecreasing sequence an. Furthermore, we assume that a multivariate
central limit theorem holds, i.e.,

a1/2n (θ̂n − θ)
d

−→ Np(0,Σ). (2)

If both (1) and (2) are fulfilled we write θ̂n
a
∼ Np(θ, Sn). Then, by Theorem 3.3.A in Serfling

(1980), the linear function ϑ̂n = Kθ̂n, i.e., an estimate of our parameters of interest, also
follows an approximate multivariate normal distribution

ϑ̂n = Kθ̂n
a
∼ Nk(ϑ, S

⋆
n)

with covariance matrix S
⋆
n := KSnK

⊤ for any fixed matrix K ∈ R
k,p. Thus we need not

to distinguish between elemental parameters θ or derived parameters ϑ = Kθ that are of
interest to the researcher. Instead we simply assume for the moment that we have (in
analogy to (1) and (2))

ϑ̂n
a
∼ Nk(ϑ, S

⋆
n) with anS

⋆
n

P
−→ Σ⋆ := KΣK⊤ ∈ R

k,k (3)

and that the k parameters in ϑ are themselves the parameters of interest to the researcher.
It is assumed that the diagonal elements of the covariance matrix are positive, i.e., Σ⋆

jj > 0
for j = 1, . . . , k.

Then, the standardized estimator ϑ̂n is again asymptotically normally distributed

Tn := D−1/2
n (ϑ̂n − ϑ)

a
∼ Nk(0,Rn) (4)

where Dn = diag(S⋆
n) is the diagonal matrix given by the diagonal elements of S⋆

n and

Rn = D−1/2
n S

⋆
nD

−1/2
n ∈ R

k,k
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is the correlation matrix of the k-dimensional statistic Tn. To demonstrate (4), note that

with (3) we have anS
⋆
n

P
−→ Σ⋆ and anDn

P
−→ diag(Σ⋆). Define the sequence ãn needed to

establish ã-convergence in (4) by ãn ≡ 1. Then we have

ãnRn = D−1/2
n S

⋆
nD

−1/2
n

= (anDn)
−1/2(anS

⋆
n)(anDn)

−1/2

P
−→ diag(Σ⋆)−1/2 Σ⋆ diag(Σ⋆)−1/2 =: R ∈ R

k,k

where the convergence in probability to a constant follows from Slutzky’s Theorem (The-
orem 1.5.4, Serfling, 1980) and therefore (4) holds. To finish note that

Tn = D−1/2
n (ϑ̂n − ϑ) = (anDn)

−1/2a1/2n (ϑ̂n − ϑ)
d

−→ Nk(0,R).

For the purposes of multiple comparisons, we need convergence of multivariate probabilities
calculated for the vector Tn when Tn is assumed normally distributed with Rn treated
as if it were the true correlation matrix. However, such probabilities P(max(|Tn| ≤ t)

are continuous functions of Rn (and a critical value t) which converge by Rn
P

−→ R as
a consequence of Theorem 1.7 in Serfling (1980). In cases where Tn is assumed multi-
variate t distributed with Rn treated as the estimated correlation matrix, we have similar
convergence as the degrees of freedom approach infinity.

Since we only assume that the parameter estimates are asymptotically normally distributed
with a consistent estimate of the associated covariance matrix being available, our frame-
work covers a large class of statistical models, including linear regression and ANOVA
models, generalized linear models, linear mixed effects models, the Cox model, robust lin-
ear models, etc. Standard software packages can be used to fit such models and obtain
the estimates θ̂n and Sn which are essentially the only two quantities that are needed for
what follows in Section˜3. It should be noted that the elemental parameters θ are not
necessarily means or differences of means in AN(C)OVA models. Also, we do not restrict
our attention to contrasts of such means, but allow for any set of constants leading to the
linear functions ϑ = Kθ of interest. Specific examples for K and θ will be given later in
Sections˜4 and 6.

3 Global and Simultaneous Inference

Based on the results from Section˜2, we now focus on the derivation of suitable inference
procedures. We start considering the general linear hypothesis (Searle, 1971) formulated
in terms of our parameters of interest ϑ

H0 : ϑ := Kθ = m.
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Under the conditions of H0 it follows from Section˜2 that

Tn = D−1/2
n (ϑ̂n −m)

a
∼ Nk(0,Rn).

This approximating distribution will now be used as the reference distribution when con-
structing the inference procedures. The global hypothesis H0 can be tested using standard
global tests, such as the F - or the χ2-test. An alternative approach is to use maximum
tests, as explained in Subsection˜3.1. Note that a small global p-value (obtained from one
of these procedures) leading to a rejection of H0 does not give further indication about
the nature of the significant result. Therefore, one is often interested in the individual null
hypotheses

H
j
0 : ϑj = mj.

Testing the hypotheses set {H1
0 , . . . , H

k
0 } simultaneously thus requires the individual as-

sessments while maintaining the familywise error rate, as discussed in Subsection˜3.2

At this point it is worth considering two special cases. A stronger assumption than asymp-
totic normality of θ̂n in (2) is exact normality, i.e., θ̂n ∼ Np(θ,Σ). If the covariance matrix
Σ is known, it follows by standard arguments that Tn ∼ Nk(0,R), when Tn is normalized
using fixed, known variances. Otherwise, in the typical situation of linear models with
normal i.i.d. errors, Σ = σ2A, where σ2 is unknown but A is fixed and known, the exact
distribution of Tn is a k-dimensional multivariate tk(ν,R) distribution with ν degrees of
freedom (ν = n− p− 1 for linear models), see Tong (1990).

3.1 Global Inference

The F - and the χ2-test are classical approaches to assess the global null hypothesis H0.
Standard results (such as Theorem 3.5, Serfling, 1980) ensure that

X2 = T⊤

nR
+
nTn

d
−→ χ2(Rank(R)) when θ̂n

a
∼ Np(θ, Sn)

F =
T⊤

nR
+Tn

Rank(R)
∼ F(Rank(R), ν) when θ̂n ∼ Np(θ, σ

2A),

where Rank(R) and ν are the corresponding degrees of freedom of the χ2 and F distri-
bution, respectively. Furthermore, Rank(Rn)

+ denotes the Moore-Penrose inverse of the
correlation matrix Rank(R).

Another suitable scalar test statistic for testing the global hypothesis H0 is to consider
the maximum of the individual test statistics T1,n, . . . , Tk,n of the multivariate statistic
Tn = (T1,n, . . . , Tk,n), leading to a max-t type test statistic max(|Tn|). The distribution
of this statistic under the conditions of H0 can be handled through the k-dimensional
distribution

P(max(|Tn|) ≤ t) ∼=

t
∫

−t

· · ·

t
∫

−t

ϕk(x1, . . . , xk;R, ν) dx1 · · · dxk =: gν(R, t) (5)
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for some t ∈ R, where ϕk is the density function of either the limiting k-dimensional
multivariate normal (with ν = ∞ and the ‘≈’ operator) or the exact multivariate tk(ν,R)-
distribution (with ν < ∞ and the ‘=’ operator). Since R is usually unknown, we plug-in
the consistent estimate Rn as discussed in Section˜2. The resulting global p-value (exact
or approximate, depending on context) for H0 is 1 − gν(Rn,max |t|) when T = t has
been observed. Efficient methods for approximating the above multivariate normal and
t integrals are described in Genz (1992); Genz and Bretz (1999); Bretz et˜al. (2001) and
Genz and Bretz (2002).

In contrast to the global F - or χ2-test, the max-t test based on the test statistic max(|Tn|)
also provides information, which of the k individual null hypotheses H

j
0 , j = 1, . . . , k is

significant, as well as simultaneous confidence intervals, as shown in the next subsection.

3.2 Simultaneous Inference

We now consider testing the k null hypotheses H1
0 , . . . , H

k
0 individually and require that

the familywise error rate, i.e., the probability of falsely rejecting at least one true null
hypothesis, is bounded by the nominal significance level α ∈ (0, 1). In what follows we
use adjusted p-values to describe the decision rules. Adjusted p-values are defined as the
smallest significance level for which one still rejects an individual hypothesis H

j
0 , given a

particular multiple test procedure. In the present context of single-step tests, the (at least
asymptotic) adjusted p-value for the jth individual two-sided hypothesis Hj

0 : ϑj = mj, j =
1, . . . , k, is given by

pj = 1− gν(Rn, |tj|),

where t1, . . . , tk denote the observed test statistics. By construction, we can reject an
individual null hypothesis H

j
0 , j = 1, . . . , k, whenever the associated adjusted p-value is

less than or equal to the pre-specified significance level α, i.e., pj ≤ α. The adjusted
p-values are calculated from expression˜(5).

Similar results also hold for one-sided testing problems. The adjusted p-values for one-
sided cases are defined analogously, using one-sided multidimensional integrals instead of
the two-sided integrals (5). Again, we refer to Genz (1992); Genz and Bretz (1999); Bretz
et˜al. (2001) and Genz and Bretz (2002) for the numerical details.

In addition to a simultaneous test procedure, a (at least approximate) simultaneous (1 −
2α)× 100% confidence interval for ϑ is given by

ϑ̂n ± qαD
1/2
n

where qα is the 1 − α quantile of the distribution (asymptotic, if necessary) of Tn. This
quantile can be calculated or approximated via (5), i.e., qα is chosen such that gν(Rn, qα) =
1− α. The corresponding one-sided versions are defined analogously.
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It should be noted that the simultaneous inference procedures described so far belong to
the class of single-step procedures, since a common critical value qα is used for the indi-
vidual tests. Single-step procedures have the advantage that corresponding simultaneous
confidence intervals are easily available, as previously noted. However, single-step proce-
dures can always be improved by stepwise extensions based on the closed test procedure.
That is, for a given family of null hypotheses H1

0 , . . . , H
k
0 , an individual hypothesis Hj

0 is
rejected only if all intersection hypotheses HJ =

⋂

i∈J H
i
0 with j ∈ J ⊆ {1, . . . , k} are

rejected (Marcus et˜al., 1976). Such stepwise extensions can thus be applied to any of the
methods discussed in this paper, see for example Westfall (1997) and Westfall and Tobias
(2007).

4 Applications

The methodological framework described in Sections˜2 and 3 is very general and thus
applicable to a wide range of statistical models. Many estimation techniques, such as
(restricted) maximum likelihood and M-estimation, provide at least asymptotically normal
estimates of the elemental parameters together with consistent estimates of their covariance
matrix. In this section we illustrate the generality of the methodology by reviewing some
potential applications. Detailed numerical examples are discussed in Section˜6. In what
follows, we assume m = 0 only for the sake of simplicity. The next paragraphs highlight a
subjective selection of some special cases of practical importance.

Multiple Linear Regression. In standard regression models the observations Zi of
subject i = 1, . . . , n consist of a response variable Yi and a vector of covariates Xi =
(Xi1, . . . , Xiq), such that Zi = (Yi,Xi) and p = q+1. The response is modelled by a linear
combination of the covariates with normal error εi and constant variance σ2,

Yi = β0 +

q
∑

j=1

βjXij + σεi,

where ε = (ε1, . . . , εn)
⊤ ∼ Nn(0, In). The elemental parameter vector is θ = (β0, β1, . . . , βq),

which is usually estimated by

θ̂n =
(

X⊤X
)−1

X⊤Y ∼ Nq+1

(

θ, σ2
(

X⊤X
)−1

)

,

where Y = (Y1, . . . , Yn) denotes the response vector and X = (1, (Xij))ij denotes the
design matrix, i = 1, . . . , n, j = 1, . . . , q. Thus, for every matrix K ∈ R

k,q+1 of constants
determining the experimental questions of interest we have

ϑ̂n = Kθ̂n ∼ Nk(Kθ, σ2K
(

X⊤X
)−1

K⊤).
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Under the null hypothesis ϑ = 0 the standardized test statistic follows a multivariate t

distribution

Tn = D−1/2
n ϑ̂n ∼ tq+1(n− q,R),

where Dn = σ̂2diag(K
(

X⊤X
)−1

K⊤) is the diagonal matrix of the estimated variances of

Kθ̂ and R is the correlation matrix as given in Section˜3. The body fat prediction example
presented in Subsection 6.2 illustrates the application of simultaneous inference procedures
in the context of variable selection in linear regression models.

One-way ANOVA. Consider a one-way ANOVA model for a factor measured at q levels
with a continuous response

Yij = µ+ γj + εij (6)

and independent normal errors εij ∼ N1(0, σ
2), j = 1, . . . , q, i = 1, . . . , nj. Note that

the model description in (6) is overparameterized. A standard approach is to consider a
suitable re-parametrization. The so-called ”treatment contrast” vector θ = (µ, γ2− γ1, γ3−
γ1, . . . , γq−γ1) is, for example, the default re-parametrization used as elemental parameters
in the R-system for statistical computing (R Development Core Team, 2008).

Many classical multiple comparison procedures can be embedded into this framework,
including Dunnett’s many-to-one comparisons and Tukey’s all-pairwise comparisons. For
Dunnett’s procedure, the differences γj−γ1 are tested for all j = 2, . . . , q, where γ1 denotes
the mean treatment effect of a control group. In the notation from Section˜2 we thus have

KDunnett = (0, diag(q))

resulting in the parameters of interest

ϑDunnett = KDunnettθ = (γ2 − γ1, γ3 − γ1, . . . , γq − γ1)

of interest. For Tukey’s procedure, the interest is in all-pairwise comparisons of the pa-
rameters γ1, . . . , γq. For q = 3, for example, we have

KTukey =





0 1 0
0 0 1
0 1 −1





with parameters of interest

ϑTukey = KTukeyθ = (γ2 − γ1, γ3 − γ1, γ2 − γ3).

Many further multiple comparison procedures have been investigated in the past, which
all fit into this framework. We refer to Bretz et˜al. (2001) for a related comprehensive list.
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Note that under the standard ANOVA assumptions of i.i.d.˜normal errors with constant
variance the vector of test statistics Tn follows a multivariate t distribution. Thus, related
simultaneous tests and confidence intervals do not rely on asymptotics and can be computed
analytically instead, as shown in Section˜3. To illustrate simultaneous inference procedures
in one-way ANOVA models, we consider all pairwise comparisons of expression levels for
various genetic conditions of alcoholism in Subsection˜6.1.

Further parametric models. In generalized linear models, the exact distribution of the
parameter estimates is usually unknown and thus the asymptotic normal distribution is the
basis for all inference procedures. When we are interested in inference about model param-
eters corresponding to levels of a certain factor, the same multiple comparison procedures
as sketched above are available.

Linear and non-linear mixed effects models fitted by restricted maximum-likelihood pro-
vide the data analyst with asymptotically normal estimates and a consistent covariance
matrix as well so that all assumptions of our framework are met and one can set up simul-
taneous inference procedures for these models as well. The same is true for the Cox model

or other parametric survival models such as the Weibull model.

We use logistic regression models to estimated the probability of suffering from Alzheimer’s
disease in Subsection˜6.3, compare several risk factors for survival of leukemia patients
by means of a Weibull model in Subsection˜6.4 and obtain probability estimates of deer
browsing for various tree species from mixed models in Subsection˜6.5.

Robust simultaneous inference. Yet another application is to use robust variants
of the previously discussed statistical models. One possibility is to consider the use of
sandwich estimators Sn for the covariance matrix cov(θ̂n) when, for example, the vari-
ance homogeneity assumption is violated. An alternative is to apply robust estimation
techniques in linear models, for example S-, M- or MM-estimation (see Rousseeuw and
Leroy, 2003; Stefanski and Boos, 2002; Yohai, 1987, for example), which again provide us
with asymptotically normal estimates. The reader is referred to Subsection˜6.2 for some
numerical examples illustrating these ideas.

5 Implementation

The multcomp package (Hothorn et˜al., 2008) in R (R Development Core Team, 2008)
provides a general implementation of the framework for simultaneous inference in semi-
parametric models described in Sections˜2 and˜3. The numerical examples in Section˜6
will all be analyzed using the multcomp package. In this section we briefly introduce
the user-interface and refer the reader to the online documentation of the package for the
technical details.
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Estimated model coefficients θ̂n and their estimated covariance matrix Sn are accessible in
R via coef() and vcov()methods available for most statistical models in R, such as objects
of class lm, glm, coxph, nlme, mer or survreg. Having this information at hand, the glht()
function sets up the general linear hypothesis for a model ‘model’ and a representation of
the matrix K (via its linfct argument):

glht(model, linfct, alternative = c("two.sided", "less", "greater"),

rhs = 0, ...)

The two remaining arguments alternative and rhs define the direction of the alternative
(see Section˜3) and m, respectively.

The matrix K can be described in three different ways:

❼ by a matrix with length(coef(model)) columns, or

❼ by an expression or character vector giving a symbolic description of the linear func-
tions of interest, or

❼ by an object of class mcp (for multiple comparison procedure).

The last alternative is convenient when contrasts of factor levels are to be compared and
the model contrasts used to define the design matrix of the model have to be taken into
account. The mcp() function takes the name of the factor to be tested as an argument as
well as a character defining the type of comparisons as its value. For example, mcp(treat
= "Tukey") sets up a matrix K for Tukey’s all-pairwise comparisons among the levels of
the factor treat, which has to appear on right hand side of the model formula of model. In
this particular case, we need to assume that model.frame() and model.matrix() methods
for model are available as well.

The mcp() function must be used with care when defining parameters of interest in two-way
ANOVA or ANCOVA models. Here, the definition of treatment differences (such as Tukey’s
all-pair comparisons or Dunnett’s comparison with a control) might be problem-specific.
For example, in an ANCOVA model (here without intercept term)

Yij = γj + βjXi + εij; j = 1, . . . , q, i = 1, . . . , nj

the parameters of interest might be γj − γ1 + βjx− β1x for some value x of the continuous
covariate X rather than the comparisons with a control γj − γ1 that would be computed
by mcp() with "Dunnett" option. The same problem occurs when interaction terms are
present in a two-way ANOVA model, where the hypotheses might depend on the sample
sizes. Because it is impossible to determine the parameters of interest automatically in
this case, mcp() in multcomp will by default generate comparisons for the main effects γj
only, ignoring covariates and interactions. Since version 1.1-2, one can specify to average
over interaction terms and covariates using arguments interaction_average = TRUE and
covariate_average = TRUE respectively, whereas versions older than 1.0-0 automatically
averaged over interaction terms. We suggest to the users, however, that they write out,
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manually, the set of contrasts they want. One should do this whenever there is doubt about
what the default contrasts measure, which typically happens in models with higher order
interaction terms. We refer to Hsu (1996), Chapter˜7, and Searle (1971), Chapter˜7.3, for
further discussions and examples on this issue.

Objects of class glht returned by glht() include coef() and vcov() methods to compute
ϑ̂n and S

⋆
n. Furthermore, a summary() method is available to perform different tests (max

t, χ2 and F -tests) and p-value adjustments, including those taking logical constraints into
account (Shaffer, 1986; Westfall, 1997). In addition, the confint() method applied to
objects of class glht returns simultaneous confidence intervals and allows for a graphical
representation of the results. The numerical accuracy of adjusted p-values and simultane-
ous confidence intervals implemented in multcomp is continuously checked against results
reported by Westfall et˜al. (1999).

6 Illustrations

6.1 Genetic Components of Alcoholism

Various studies have linked alcohol dependence phenotypes to chromosome 4. One can-
didate gene is NACP (non-amyloid component of plaques), coding for alpha synuclein.
Bönsch et˜al. (2005) found longer alleles of NACP -REP1 in alcohol-dependent patients
compared with healthy controls and report that the allele lengths show some association
with levels of expressed alpha synuclein mRNA in alcohol-dependent subjects (see Fig-
ure˜1). Allele length is measured as a sum score built from additive dinucleotide repeat
length and categorized into three groups: short (0 − 4, n = 24), intermediate (5 − 9,
n = 58), and long (10 − 12, n = 15). The data are available from package coin. Here,
we are interested in comparing the distribution of the expression level of alpha synuclein
mRNA in three groups of subjects defined by the allele length.

Thus, we fit a simple one-way ANOVA model to the data and define K such that Kθ

contains all three group differences (Tukey’s all-pairwise comparisons):

R> data("alpha", package = "coin")

R> amod <- aov(elevel ~ alength, data = alpha)

R> amod_glht <- glht(amod, linfct = mcp(alength = "Tukey"))

R> amod_glht$linfct

(Intercept) alengthintermediate alengthlong

intermediate - short 0 1 0

long - short 0 0 1

long - intermediate 0 -1 1

attr(,"type")

[1] "Tukey"
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Figure 1: alpha data: Distribution of levels of expressed alpha synuclein mRNA in three
groups defined by the NACP -REP1 allele lengths.

The amod_glht object now contains information about the estimated linear function ϑ̂n

and their covariance matrix S
⋆
n which can be inspected via the coef() and vcov()methods:

R> coef(amod_glht)

intermediate - short long - short long - intermediate

0.4341523 1.1887500 0.7545977

R> vcov(amod_glht)

intermediate - short long - short long - intermediate

intermediate - short 0.14717604 0.1041001 -0.04307591

long - short 0.10410012 0.2706603 0.16656020

long - intermediate -0.04307591 0.1665602 0.20963611

The summary() and confint() methods can be used to compute a summary statistic
including adjusted p-values and simultaneous confidence intervals, respectively:

R> confint(amod_glht)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = elevel ~ alength, data = alpha)

Quantile = 2.3718

95% family-wise confidence level
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Linear Hypotheses:

Estimate lwr upr

intermediate - short == 0 0.43415 -0.47574 1.34404

long - short == 0 1.18875 -0.04515 2.42265

long - intermediate == 0 0.75460 -0.33133 1.84053

R> summary(amod_glht)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = elevel ~ alength, data = alpha)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

intermediate - short == 0 0.4342 0.3836 1.132 0.4924

long - short == 0 1.1888 0.5203 2.285 0.0615 .

long - intermediate == 0 0.7546 0.4579 1.648 0.2270

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- single-step method)

Because of the variance heterogeneity that can be observed in Figure˜1, one might be
concerned with the validity of the above results stating that there is no difference between
any combination of the three allele lengths. A sandwich estimator Sn might be more
appropriate in this situation, and the vcov argument can be used to specify a function to
compute some alternative covariance estimator Sn as follows:

R> amod_glht_sw <- glht(amod, linfct = mcp(alength = "Tukey"),

+ vcov = sandwich)

R> summary(amod_glht_sw)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = elevel ~ alength, data = alpha)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

intermediate - short == 0 0.4342 0.4239 1.024 0.5594

long - short == 0 1.1888 0.4432 2.682 0.0227 *

long - intermediate == 0 0.7546 0.3184 2.370 0.0502 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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(Adjusted p values reported -- single-step method)

We used the sandwich() function from package sandwich (Zeileis, 2004, 2006) which pro-
vides us with a heteroscedasticity-consistent estimator of the covariance matrix. This
result is more in line with previously published findings for this study obtained from non-
parametric test procedures such as the Kruskal-Wallis test. A comparison of the simul-
taneous confidence intervals calculated based on the ordinary and sandwich estimator is
given in Figure˜2.

Tukey (ordinary Sn)

−0.5 0.5 1.5 2.5

long − intermediate

long − short

intermediate − short (

(

(

)

)

)

●

●

●

Difference

Tukey (sandwich Sn)

−0.5 0.5 1.5 2.5

long − intermediate

long − short

intermediate − short (

(

(

)

)

)

●

●

●

Difference

Figure 2: alpha data: Simultaneous confidence intervals based on the ordinary covariance
matrix (left) and a sandwich estimator (right).

6.2 Prediction of Total Body Fat

Garcia et˜al. (2005) report on the development of predictive regression equations for body
fat content by means of p = 9 common anthropometric measurements which were obtained
for n = 71 healthy German women. In addition, the women’s body composition was
measured by Dual Energy X-Ray Absorptiometry (DXA). This reference method is very
accurate in measuring body fat but finds little applicability in practical environments,
mainly because of high costs and the methodological efforts needed. Therefore, a simple
regression equation for predicting DXA measurements of body fat is of special interest
for the practitioner. Backward-elimination was applied to select important variables from
the available anthropometrical measurements and Garcia et˜al. (2005) report a final linear
model utilizing hip circumference, knee breadth and a compound covariate which is defined
as the sum of log chin skinfold, log triceps skinfold and log subscapular skinfold. Here,
we fit the saturated model to the data and use the max-t test over all t-statistics to select
important variables based on adjusted p-values. The linear model including all covariates
and the classical unadjusted p-values are given by
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R> data("bodyfat", package = "mboost")

R> summary(lmod <- lm(DEXfat ~ ., data = bodyfat))

Call:

lm(formula = DEXfat ~ ., data = bodyfat)

Residuals:

Min 1Q Median 3Q Max

-6.954 -1.949 -0.219 1.169 10.812

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -69.02828 7.51686 -9.183 4.18e-13 ***

age 0.01996 0.03221 0.620 0.53777

waistcirc 0.21049 0.06714 3.135 0.00264 **

hipcirc 0.34351 0.08037 4.274 6.85e-05 ***

elbowbreadth -0.41237 1.02291 -0.403 0.68826

kneebreadth 1.75798 0.72495 2.425 0.01829 *

anthro3a 5.74230 5.20752 1.103 0.27449

anthro3b 9.86643 5.65786 1.744 0.08622 .

anthro3c 0.38743 2.08746 0.186 0.85338

anthro4 -6.57439 6.48918 -1.013 0.31500

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.281 on 61 degrees of freedom

Multiple R-squared: 0.9231, Adjusted R-squared: 0.9117

F-statistic: 81.35 on 9 and 61 DF, p-value: < 2.2e-16

The marix of linear functions K is basically the identity matrix, except for the intercept
which is omitted. Once the matrix K has been defined, it can be used to set up the general
linear hypotheses:

R> K <- cbind(0, diag(length(coef(lmod)) - 1))

R> rownames(K) <- names(coef(lmod))[-1]

R> lmod_glht <- glht(lmod, linfct = K)

Classically, one would perform an F -test to check if any of the regression coefficients is
non-zero:

R> summary(lmod_glht, test = Ftest())

General Linear Hypotheses

Linear Hypotheses:

Estimate

age == 0 0.01996

waistcirc == 0 0.21049

hipcirc == 0 0.34351

elbowbreadth == 0 -0.41237
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kneebreadth == 0 1.75798

anthro3a == 0 5.74230

anthro3b == 0 9.86643

anthro3c == 0 0.38743

anthro4 == 0 -6.57439

Global Test:

F DF1 DF2 Pr(>F)

1 81.35 9 61 1.387e-30

but the source of the deviation from the global null hypothesis can only be inspected by
the corresponding max-t test, i.e., via

R> summary(lmod_glht)

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = DEXfat ~ ., data = bodyfat)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

age == 0 0.01996 0.03221 0.620 0.9959

waistcirc == 0 0.21049 0.06714 3.135 0.0213 *

hipcirc == 0 0.34351 0.08037 4.274 <0.001 ***

elbowbreadth == 0 -0.41237 1.02291 -0.403 0.9998

kneebreadth == 0 1.75798 0.72495 2.425 0.1312

anthro3a == 0 5.74230 5.20752 1.103 0.8948

anthro3b == 0 9.86643 5.65786 1.744 0.4776

anthro3c == 0 0.38743 2.08746 0.186 1.0000

anthro4 == 0 -6.57439 6.48918 -1.013 0.9298

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- single-step method)

Only two covariates, waist and hip circumference, seem to be important and caused the
rejection of H0. Alternatively, an MM-estimator (Yohai, 1987) as implemented by lmrob()

from package lmrob (Todorov et˜al., 2007) can be used to fit a robust version of the above
linear model, the results coincide rather nicely (note that the control arguments to lmrob()
were changed in multcomp version 1.2-6 and thus the results have slightly changed):

R> summary(glht(lmrob(DEXfat ~ ., data = bodyfat,

+ control = lmrob.control(setting = "KS2011")), linfct = K))

Simultaneous Tests for General Linear Hypotheses

Fit: lmrob(formula = DEXfat ~ ., data = bodyfat, control = lmrob.control(setting = "KS2011"))

Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)

age == 0 0.02402 0.02522 0.953 0.951
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waistcirc == 0 0.23332 0.05291 4.410 <0.001 ***

hipcirc == 0 0.32704 0.06332 5.165 <0.001 ***

elbowbreadth == 0 -0.18370 0.81215 -0.226 1.000

kneebreadth == 0 0.93892 0.58558 1.603 0.574

anthro3a == 0 2.39744 4.10040 0.585 0.998

anthro3b == 0 10.43204 4.50237 2.317 0.150

anthro3c == 0 1.51427 1.63963 0.924 0.959

anthro4 == 0 -5.77756 5.15799 -1.120 0.890

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- single-step method)

and the result reported above holds under very mild model assumptions.

6.3 Smoking and Alzheimer’s Disease

Salib and Hillier (1997) report results of a case-control study on Alzheimer’s disease and
smoking behavior of 198 female and male Alzheimer patients and 164 controls. The
alzheimer data have been re-constructed from Table˜4 in Salib and Hillier (1997). The
authors conclude that ‘cigarette smoking is less frequent in men with Alzheimer’s disease.’
Originally, one was interested to assess whether there is any association between smoking
and Alzheimer’s (or other dementia) diseases. Here, we focus on how a potential association
can be described (see Hothorn et˜al., 2006, for a non-parametric approach).

First, we fit a logistic regression model including both main effects and an interaction effect
of smoking and gender. The response is a binary variable giving the diagnosis of the patient
(either suffering from Alzheimer’s disease or other dementias):

R> data("alzheimer", package = "coin")

R> y <- factor(alzheimer$disease == "Alzheimer",

+ labels = c("other", "Alzheimer"))

R> gmod <- glm(y ~ smoking * gender, data = alzheimer,

+ family = binomial())

R> summary(gmod)

Call:

glm(formula = y ~ smoking * gender, family = binomial(), data = alzheimer)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.6120 -1.0151 -0.7897 1.3141 2.0782

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.39442 0.13563 -2.908 0.003638 **

smoking<10 0.03774 0.51113 0.074 0.941140
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smoking10-20 -0.61111 0.33084 -1.847 0.064725 .

smoking>20 0.54857 0.34867 1.573 0.115647

genderMale 0.07856 0.26039 0.302 0.762870

smoking<10:genderMale 1.25894 0.87692 1.436 0.151105

smoking10-20:genderMale -0.02855 0.50116 -0.057 0.954568

smoking>20:genderMale -2.26959 0.59948 -3.786 0.000153 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 707.90 on 537 degrees of freedom

Residual deviance: 673.55 on 530 degrees of freedom

AIC: 689.55

Number of Fisher Scoring iterations: 4

The negative regression coefficient for heavy smoking males indicates that Alzheimer’s
disease might be less frequent in this group, but the model is still difficult to interpret
based on the coefficients and corresponding p-values only. Therefore, confidence intervals
on the probability scale for the different ‘risk groups’ are interesting and can be computed as
follows. For each combination of gender and smoking behavior, the probability of suffering
from Alzheimer’s disease can be estimated by computing the logit function of the linear
predictor from model gmod. Using the predict() method for generalized linear models
is a convenient way to compute these probability estimates. Alternatively, we can set up

K such that
(

1 + exp(−ϑ̂n)
)−1

is the vector of estimated probabilities with simultaneous

confidence intervals
(

(

1 + exp
(

−
(

ϑ̂n − qαD
1/2
n

)))−1

,
(

1 + exp
(

−
(

ϑ̂n + qαD
1/2
n

)))−1
)

.

For our model, K is given by the following matrix (essentially the design matrix of gmod
for eight persons with different smoking behavior from both genders)

R> K

(Icpt) s<10 s10-20 s>20 gMale s<10:gMale s10-20:gMale s>20:gMale

None:Female 1 0 0 0 0 0 0 0

<10:Female 1 1 0 0 0 0 0 0

10-20:Female 1 0 1 0 0 0 0 0

>20:Female 1 0 0 1 0 0 0 0

None:Male 1 0 0 0 1 0 0 0

<10:Male 1 1 0 0 1 1 0 0

10-20:Male 1 0 1 0 1 0 1 0

>20:Male 1 0 0 1 1 0 0 1

and can easily be used to compute the confidence intervals described above
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R> gmod_ci <- confint(glht(gmod, linfct = K))

R> gmod_ci$confint <- apply(gmod_ci$confint, 2, binomial()$linkinv)

R> plot(gmod_ci, xlab = "Probability of Developing Alzheimer",

+ xlim = c(0, 1))

The simultaneous confidence intervals are depicted in Figure˜3. Using this representation
of the results, it is obvious that Alzheimer’s disease is less frequent in heavy smoking men
compared to all other configurations of the two covariates.
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Figure 3: alzheimer data: Simultaneous confidence intervals for the probability to suffer
from Alzheimer’s disease.

6.4 Acute Myeloid Leukemia Survival

The treatment of patients suffering from acute myeloid leukemia (AML) is determined
by a tumor classification scheme taking the status of various cytogenetic aberrations into
account. Bullinger et˜al. (2004) investigate an extended tumor classification scheme in-
corporating molecular subgroups of the disease obtained by gene expression profiling. The
analyses reported here are based on clinical data only (thus omitting available gene ex-
pression data) published online at http://www.ncbi.nlm.nih.gov/geo, accession number
GSE425. The overall survival time and censoring indicator as well as the clinical variables
age, sex, lactic dehydrogenase level (LDH), white blood cell count (WBC), and treatment
group are taken from Supplementary Table 1 in Bullinger et˜al. (2004). In addition, this
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table provides two molecular markers, the fms-like tyrosine kinase 3 (FLT3) and the mixed-
lineage leukemia (MLL) gene, as well as cytogenetic information helpful to define a risk
score (‘low’: karyotype t(8;21), t(15;17) and inv(16); ‘intermediate’: normal karyotype and
t(9;11); and ‘high’: all other forms). One interesting question might be the usefulness
of this risk score. Here, we fit a Weibull survival model to the data including all above
mentioned covariates as well as their interactions with the patient’s gender. Tukey’s all-
pairwise comparisons highlight that there seems to be a difference between ‘high’ scores
and both ‘low’ and ‘intermediate’ ones but the latter two aren’t distinguishable:

R> smod <- survreg(Surv(time, event) ~ Sex + Age + WBC + LDH + FLT3 + risk,

+ data = clinical)

R> summary(glht(smod, linfct = mcp(risk = "Tukey")))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: survreg(formula = Surv(time, event) ~ Sex + Age + WBC + LDH +

FLT3 + risk, data = clinical)

Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)

intermediate - high == 0 1.1101 0.3851 2.882 0.01119 *

low - high == 0 1.4769 0.4583 3.223 0.00359 **

low - intermediate == 0 0.3668 0.4303 0.852 0.66920

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- single-step method)

Again, a sandwich estimator of the covariance matrix Sn can be plugged-in but the results
stay very much the same in this case.

6.5 Forest Regeneration

In most parts of Germany, the natural or artificial regeneration of forests is difficult due
to a high browsing intensity. Young trees suffer from browsing damage, mostly by roe
and red deer. In order to estimate the browsing intensity for several tree species, the
Bavarian State Ministry of Agriculture and Forestry conducts a survey every three years.
Based on the estimated percentage of damaged trees, suggestions for the implementation or
modification of deer management plans are made. The survey takes place in all 756 game
management districts (‘Hegegemeinschaften’) in Bavaria. Here, we focus on the 2006 data
of the game management district number 513 ‘Unterer Aischgrund’ (located in Frankonia
between Erlangen and Höchstadt). The data of 2700 trees include the species and a binary
variable indicating whether or not the tree suffers from damage caused by deer browsing.
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We fit a mixed logistic regression model (using package lme4, Bates, 2005, 2007) without
intercept and with random effects accounting for the spatial variation of the trees. For
each plot nested within a set of five plots orientated on a 100m transect (the location of
the transect is determined by a pre-defined equally spaced lattice of the area under test), a
random intercept is included in the model. We are interested in probability estimates and
confidence intervals for each tree species. Each of the six fixed parameters of the model
corresponds to one species, therefore, K = diag(6) is the linear function we are interested
in:

R> mmod <- lmer(damage ~ species - 1 + (1 | lattice / plot),

+ data = trees513, family = binomial())

R> K <- diag(length(fixef(mmod)))

Based onK, we first compute simultaneous confidence intervals forKθ and transform these
into probabilities:

R> ci <- confint(glht(mmod, linfct = K))

R> ci$confint <- 1 - binomial()$linkinv(ci$confint)

R> ci$confint[,2:3] <- ci$confint[,3:2]

The result is shown in Figure˜4. Browsing is less frequent in hardwood but especially small
oak trees are severely at risk. Consequently, the local authorities increased the number of
roe deers to be harvested in the following years. The large confidence interval for ash,
maple, elm and lime trees is caused by the small sample size.

7 Conclusion

Multiple comparisons in linear models have been in use for a long time, see Hochberg and
Tamhane (1987), Hsu (1996), and Bretz et˜al. (2008). In this paper we have extended
the theory to a broader class of parametric and semi-parametric statistical models, which
allows for a unified treatment of multiple comparisons and other simultaneous inference
procedures in generalized linear models, mixed models, models for censored data, robust
models, etc. In essence, all that is required is a parameter estimate θ̂n following an asymp-
totic multivariate normal distribution, and a consistent estimate of its covariance matrix.
Standard software packages can be used to compute these quantities. As shown in this
paper, these quantities are sufficient to derive powerful simultaneous inference procedures,
which are tailored to the experimental questions under investigation. Therefore, honest de-
cisions based on simultaneous inference procedures maintaining a pre-specified familywise
error rate (at least asymptotically) can now be based on almost all classical and modern
statistical models.

The examples given in Section˜6 illustrate two facts. At first, the presented approach helps
to formulate simultaneous inference procedures in situations that were previously hard to
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Figure 4: trees513 data: Probability of damage caused by roe deer browsing for six tree
species. Sample sizes are given in brackets.

deal with and, at second, a flexible open-source implementation offers tools to actually
perform such procedures rather easily. With the multcomp package, freely available from
http://CRAN.R-project.org, honest simultaneous inference is only two simple R com-
mands away. The analyses shown in Section˜6 are reproducible via the multcomp package
vignette “generalsiminf”.
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