
Package ‘findn’
February 3, 2026

Type Package

Title Simulation Based Sample Size Estimation

Version 0.1.0

Maintainer Lukas Baumann <baumann@imbi.uni-heidelberg.de>

Description Estimates the sample size for a test or a trial based on repeated simulation us-
ing a model based approach.
Implements a method by Maruo et al. (2018) <doi:10.1080/19466315.2017.1349689> and an ex-
tension.

Imports ggplot2, rlang, scales

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.3

Suggests covr, testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Lukas Baumann [aut, cre] (ORCID:
<https://orcid.org/0000-0001-7931-7470>),

Björn Bornkamp [ctb] (ORCID: <https://orcid.org/0000-0002-6294-8185>)

Repository CRAN

Date/Publication 2026-02-03 13:40:02 UTC

Contents
findn . 2
findn_maruo . 4
plot.findn . 5
print.findn . 6

Index 9

1

https://doi.org/10.1080/19466315.2017.1349689
https://orcid.org/0000-0001-7931-7470
https://orcid.org/0000-0002-6294-8185

2 findn

findn Find the Sample Size for a trial based repeated simulation using a
model based approach

Description

findn estimates the sample size to achieve a pre-defined power, when the power can only be eval-
uated using simulations. findn uses a model-based approach for this purpose.

Usage

findn(
fun,
targ,
start,
k = 25,
init_evals = 100,
r = 4,
stop = c("evals", "power_ci", "abs_unc", "rel_unc"),
max_evals = 2000,
level = 0.05,
power_ci_tol = 0.02,
abs_unc_tol = 10,
rel_unc_tol = 0.1,
var_a = 1,
var_b = 1,
alpha = 0.05,
alternative = c("two.sided", "one.sided"),
min_x = 2,
verbose = FALSE,
...

)

Arguments

fun A function that estimates the power of a trial. The function has to take at least
two arguments: n, the sample size and k, the number of iterations.

targ The target power.

start An initial guess for the sample size.

k Number of trial simulations to use in fun to estimate the power.

init_evals How many evaluations the first model is based on.

r A multiplicator for the range of the initial design points.

stop The stopping criterion. One of "evals", "power_ci", "abs_unc", "rel_unc".

max_evals The maximum number of simulations.

findn 3

level Significance level for the confidence intervals if stop is something other than
"evals". Also used to determine the levels for the confidence intervals that are
printed if verbose = TRUE.

power_ci_tol Tolerance parameter if stop = "power_ci".

abs_unc_tol Tolerance parameter if stop = "abs_unc".

rel_unc_tol Tolerance parameter if stop is "rel_unc".

var_a Variance of the prior distribution for the intercept.

var_b Variance of the prior distribution for the slope.

alpha The significance level of the underlying test. This is used to compute the mean
of the prior distribution of the intercept.

alternative Either "two.sided" or "one.sided". This is only used to determine the mean of
the intercept prior.

min_x The minimum sample size that fun can be evaluated for.

verbose If TRUE, the current sample size estimate, the predicted power and its level
percent confidence is returned after every iteration.

... Further optional arguments.

Details

findn estimates the sample size for a target function that returns a simulated power value for a test
or a trial. The target function must have at least two arguments, n, the sample size for which the
trial is simulated, and k, that specifies how often the trial is simulated. Note that depending on how
fun is written, n can either be the sample size per group or the total sample size. The function
has to return an estimate for the power of the trial for the sample size n based on k Monte Carlo
simulations.

findn uses an algorithm that assumes a probit model and computes Bayesian parameter estimates.
The mean of the prior distribution of the intercept is computed from the significance level alpha
of the underlying test and the alternative. The mean of the prior distribution of the slope is
computed from the initial guess for the sample size - start. The variances of the prior distributions
can be adjusted using the arguments var_a and var_b.

There are four different stopping criteria. When stop = "evals" the algorithm stops when the tar-
get function was evaluated max_evals times. When stop = "power_ci"the algorithm stops when
the level percent confidence interval of the predicted power at the current sample size estimate
is within the interval targ plus and minus power_ci_tol. When stop = "abs_unc" the algorithm
stops when the number of sample sizes in the uncertainty set smaller than abs_unc_tol. The uncer-
tainty set is defined as the set that contains all sample sizes for which the level percent confidence
interval for the predicted power contains targ. When stop = "rel_unc" the algorithm stops when
the relative uncertainty range is smaller than rel_unc_tol. The relative uncertainty range is de-
fined as the greatest integer in the uncertainty set minus the smallest integer in the uncertainty set,
divided by the smallest number in the uncertainty set. The algorithm also stops when stop is ei-
ther "power_ci", "abs_unc" or "rel_unc" and the stopping criterion couldn’t be satisfied within
max_evals evaluations.

4 findn_maruo

Value

findn returns an object of class findn. By default, a list containing the point estimate for the sample
size, the minimum sufficient sample size (i.e. the smallest sample size for which the lower limit
of the confidence interval for the estimated power is larger than the target power) and a message
whether the stopping criterion was reached is printed. See print.findn for details.

Examples

Function that simulates the outcomes of a two-sample t-test
ttest <- function(n, k, mu1 = 0, mu2 = 1, sd = 2) {

sample1 <- matrix(rnorm(n = ceiling(n) * k, mean = mu1, sd = sd),
ncol = k)

mean1 <- apply(sample1, 2, mean)
sd1_hat <- apply(sample1, 2, sd)
sample2 <- matrix(rnorm(n = ceiling(n) * k, mean = mu2, sd = sd),

ncol = k)
mean2 <- apply(sample2, 2, mean)
sd2_hat <- apply(sample2, 2, sd)
sd_hat <- sqrt((sd1_hat^2 + sd2_hat^2) / 2)
teststatistic <- (mean1 - mean2) / (sd_hat * sqrt(2 / n))
crit <- qt(1 - 0.025, 2 * n - 2)
return(mean(teststatistic < -crit))

}

findn(fun = ttest, targ = 0.8, k = 25, start = 100,
init_evals = 100, r = 4, stop = "evals", max_evals = 2000,
level = 0.05, var_a = 1, var_b = 0.1, alpha = 0.025,
alternative = "one.sided", verbose = FALSE)

findn_maruo Find the Sample Size Using the Algorithm by Maruo et al.

Description

findn_maruo estimates the sample size for a certain target function based on repeated simulations
using a model based approach proposed by Maruo et al. (2018).

Usage

findn_maruo(fun, targ, start = 10, k = 100, ...)

Arguments

fun A function that estimates the power of a trial. The function has to take at least
two arguments: n, the sample size and k, the number of iterations.

targ The target power. Must be either 0.8 or 0.9.
start Starting value for the algorithm. Maruo et al. suggest to use 10.
k Number of trial simulations to use in fun to estimate the power.
... Further optional arguments.

plot.findn 5

Value

findn_maruo returns a list containing the point estimate for the sample size and a list of all sample
sizes that for which the trial function was evaluated.

References

Maruo, K., Tada, K., Ishil, R. and Gosho M. (2018) An Efficient Procedure for Calculating Sample
Size Through Statistical Simulations, Statistics in Biopharmaceutical Research 10, 1-8.

Examples

Function that simulates the outcomes of a two-sample t-test
ttest <- function(n, k, mu1 = 0, mu2 = 1, sd = 2) {

sample1 <- matrix(rnorm(n = ceiling(n) * k, mean = mu1, sd = sd),
ncol = k)

mean1 <- apply(sample1, 2, mean)
sd1_hat <- apply(sample1, 2, sd)
sample2 <- matrix(rnorm(n = ceiling(n) * k, mean = mu2, sd = sd),

ncol = k)
mean2 <- apply(sample2, 2, mean)
sd2_hat <- apply(sample2, 2, sd)
sd_hat <- sqrt((sd1_hat^2 + sd2_hat^2) / 2)
teststatistic <- (mean1 - mean2) / (sd_hat * sqrt(2 / n))
crit <- qt(1 - 0.025, 2 * n - 2)
return(mean(teststatistic < -crit))

}

findn_maruo(fun = ttest, targ = 0.8)

plot.findn Plot of a findn Object

Description

Plot of a findn Object

Usage

S3 method for class 'findn'
plot(x, min_n = 1, max_n = NULL, power_lim = 0.95, ...)

Arguments

x object of class findn.

min_n lower limit of the x-axis.

max_n upper limit of the x-axis. The default is NULL.

6 print.findn

power_lim if max_n is NULL then the upper limit of the x-axis is the smallest sample size for
which the lower limit of the level percent confidence interval for the predicted
power exceeds the value of power_lim. The default is 0.95.

... Further arguments.

Value

None.

Examples

Function that simulates the outcomes of a two-sample t-test
ttest <- function(mu1 = 0, mu2 = 1, sd, n, k) {

sample1 <- matrix(rnorm(n = ceiling(n) * k, mean = mu1, sd = sd),
ncol = k)

mean1 <- apply(sample1, 2, mean)
sd1_hat <- apply(sample1, 2, sd)
sample2 <- matrix(rnorm(n = ceiling(n) * k, mean = mu2, sd = sd),

ncol = k)
mean2 <- apply(sample2, 2, mean)
sd2_hat <- apply(sample2, 2, sd)
sd_hat <- sqrt((sd1_hat^2 + sd2_hat^2) / 2)
teststatistic <- (mean1 - mean2) / (sd_hat * sqrt(2 / n))
crit <- qt(1 - 0.025, 2*n - 2)
return(mean(teststatistic < -crit))

}

Create a findn object
res.ttest <- findn(fun = ttest, targ = 0.8, k = 25, start = 100,

init_evals = 100, r = 4, stop = "evals", max_evals = 2000,
level = 0.05, var_a = 0.05, var_b = 1, alpha = 0.025,
alternative = "one.sided", sd = 2, verbose = FALSE)

plot with default settings
plot(res.ttest, power_lim = 0.95)

print.findn Printing a findn Object

Description

Displays details about a sample size estimation from a findn object.

Usage

S3 method for class 'findn'
print(
x,
details = c("low", "high"),

print.findn 7

max_n = NULL,
digits = 3,
invisible = FALSE,
...

)

Arguments

x Object of class findn.

details Either "low" (default) or "high". See also ’Details’.

max_n If details = "high" the predicted power values and confidence intervals are
shown for all sample sizes from 1 to max_n if max_n is non-NULL. See also ’De-
tails’.

digits Number of decimal places to be shown.

invisible Whether the results should be printed or only assigned.

... Further arguments.

Details

When details = "low", only the point estimate (i.e., the smallest sample for which the predicted
power exceeds the target power), the "minimum sufficient sample size" (i.e., the smallest sample
size for which the lower limit of the level interval for the predicted power exceeds the target power)
and an exit message. The exit message shows whether the chosen stopping rule was satisfied. If
details = "high" then the default behaviour (i.e. when max_n = NULL) is to display all sample
sizes, their predicted power values and the alpha whether their power exceeds the target power, and
the three largest sample sizes that are smaller than the smallest sample size that is rated uncertain
and the three smallest sample sizes which are greater than the smallest sample size that is rated
uncertain. If details = "high" and max_n is non-NULL, then the sample sizes, their predicted power
values and the confidence intervals for the predicted power values from 1 to max_n are displayed.

Value

findn returns an object of class findn which contains the following elements:

sample_size the sample size estimate

fit the model coefficients and covariance matrix from the last Bayesian probit re-
gression model

all_evals all evaluated sample sizes

targ the target power

level the significance level for the confidence intervals used for the stopping criteria

exit.mes a message about wheter the stopping criterion was reached with the number of
simulations given by max_evals

By default, a list containing the point estimate for the sample size, the minimum sufficient sample
size (i.e. the smallest sample size for which the lower limit of the confidence interval for the
estimated power is larger than the target power) and a message whether the stopping criterion was
reached is printed.

8 print.findn

Examples

Function that simulates the outcomes of a two-sample t-test
ttest <- function(mu1 = 0, mu2 = 1, sd, n, k) {

sample1 <- matrix(rnorm(n = ceiling(n) * k, mean = mu1, sd = sd),
ncol = k)

mean1 <- apply(sample1, 2, mean)
sd1_hat <- apply(sample1, 2, sd)
sample2 <- matrix(rnorm(n = ceiling(n) * k, mean = mu2, sd = sd),

ncol = k)
mean2 <- apply(sample2, 2, mean)
sd2_hat <- apply(sample2, 2, sd)
sd_hat <- sqrt((sd1_hat^2 + sd2_hat^2) / 2)
teststatistic <- (mean1 - mean2) / (sd_hat * sqrt(2 / n))
crit <- qt(1 - 0.025, 2*n - 2)
return(mean(teststatistic < -crit))

}

Create a findn object
res_ttest <- findn(fun = ttest, targ = 0.8, k = 25, start = 100,

init_evals = 100, r = 4, stop = "evals", max_evals = 2000,
level = 0.05, var_a = 0.05, var_b = 1, alpha = 0.025,
alternative = "one.sided", sd = 2, verbose = FALSE)

print with default settings
print(res_ttest, details = "low", digits = 3)

Index

findn, 2
findn_maruo, 4

plot.findn, 5
print.findn, 4, 6

9

	findn
	findn_maruo
	plot.findn
	print.findn
	Index

