Introduction

In this vignette, we explain how to customise the visualisation of tables and plots. The vignette reviews the structure of the .yml files that define styles, and demonstrates how to create and apply custom styles. It also shows how to style tables and plots programmatically, without the need to create a .yml file.

library(visOmopResults)
library(here)
library(gt)
library(ggplot2)
library(dplyr)
library(officer)

The package currently includes two built-in styles for tables and plots. Styles are defined using .yml files. To list the available styles, use:

tableStyle()
#> [1] "darwin"  "default"
plotStyle()
#> [1] "darwin"  "default"

Branding styles using .yml

The package contains two built-in styles: "default" and "darwin". The .yml files for these styles can be found here.

.yml structure

We use the "darwin" style as an example. The code chunk below shows the structure of its .yml file:

color:
  palette:
    white: '#ffffff'
    darwin_blue: '#003399'
  foreground: black
  background: white
  primary: darwin_blue
logo:
  path: https://www.ema.europa.eu/sites/default/files/styles/oe_bootstrap_theme_medium_no_crop/public/2024-07/DARWINEU_logo_LARGE.png?itok=NtwlLhSX
typography:
  base:
    family: Calibri
    size: '11'
defaults:
  shiny:
    theme:
      preset: flatly
  visOmopResults:
    template: system.file("darwinReportRef.docx", package = "visOmopResults")
    plot:
      font_family: Calibri
      font_size: '11'
      background_color: white
      header_color: darwin_blue
      header_text_color: white
      header_text_bold: yes
      grid_major_color: '#d9d9d9'
      axis_color: '#252525'
      border_color: '#595959'
      legend_position: right
    table:
      font_family: Calibri
      font_size: '9'
      border_color: darwin_blue
      border_width: 1
      header:
        background_color: darwin_blue
        text_bold: yes
        align: center
        text_color: white
        border_color: white
        font_size: 11
      header_name:
        background_color: darwin_blue
        text_bold: yes
        align: center
        text_color: white
        border_color: white
        font_size: 11
      header_level:
        background_color: darwin_blue
        text_bold: yes
        align: center
        text_color: white
        border_color: white
        font_size: 11
      column_name:
        background_color: darwin_blue
        text_bold: yes
        align: center
        text_color: white
        border_color: white
        font_size: 11
      group_label:
        background_color: darwin_blue
        text_bold: yes
        text_color: white
        border_color: white
      title:
        text_bold: yes
        align: center
        font_size: 15
      subtitle:
        text_bold: yes
        align: center
        font_size: 12
      body:
        border_width: 0.5
        border_color: darwin_blue

The .yml structure can be divided into four main sections:

  • Color: Defines the color palette and the default background and foreground colors used when a plot/table section does not override them.
  • Typography: Defines default font families and sizes for base text, plots, and tables (these can be overridden in the plot/table sections).
  • Plot: Plot-specific settings such as background color, facet header color, header text color and bold, grid color, axis color, border color, and legend position. Font settings are taken from the typography section unless overridden here.
  • Table: Table-specific settings. You can set an overall border-color and border-width, or override settings per table section. Table sections include: header, header-name, header-level, column-name, group-label, title, subtitle, and body. For each section you can set properties such as background-color, text-color, text-bold, align, font-size, border-color, and border-width.

Style hierarchy

Each plot and table element follows a style hierarchy. If a value isn’t specified at the most specific level, it inherits from higher-level entries; if none are defined, the default ggplot2 (for plots) or the default for the specific table type is used. The table below shows the priority order for common plot and table options.

Part Option 1 Option 2 Option 3
Plot
Background color defaults:visOmopResults:plot:background-color color:background -
Header (facet) color defaults:visOmopResults:plot:header-color color:foreground -
Header (facet) text color defaults:visOmopResults:plot:header-text-color - -
Header (facet) text bold defaults:visOmopResults:plot:header-text-bold color:foreground -
Border color defaults:visOmopResults:plot:border-color - -
Grid color defaults:visOmopResults:plot:grid-major-color color:foreground -
Axis color defaults:visOmopResults:plot:axis-color - -
Legend position defaults:visOmopResults:plot:legend-position - -
Font family defaults:visOmopResults:plot:font_family typography:base:family -
Font size defaults:visOmopResults:plot:font_size defaults:visOmopResults:plot:font_size typography:base:size
Table section
Background color defaults:visOmopResults:table:[section_name]:background-color color:background -
Text bold defaults:visOmopResults:table:[section_name]:text-bold - -
Text color defaults:visOmopResults:table:[section_name]:text-color - -
Text align defaults:visOmopResults:table:[section_name]:align - -
Font size defaults:visOmopResults:table:[section_name]:font-size defaults:visOmopResults:table:font-size defaults:visOmopResults:typography:base:size
Font family defaults:visOmopResults:table:[section_name]:font-family defaults:visOmopResults:table:font_family typography:base:family
Border color defaults:visOmopResults:table:[section_name]:border-color defaults:visOmopResults:table:border-color -
Border width defaults:visOmopResults:table:[section_name]:border-width defaults:visOmopResults:table:border-width -

In the examples above the YML path is represented with colon separators. For example, plot:background-color refers to the background-color key inside the plot section.

Applying styles to tables and plots

The table-formatting functions (visTable(), visOmopTable(), and formatTable()) and plot functions accept a style argument. The style argument can be:

  • the name of a built-in style (e.g. "darwin"), or
  • the path to a user .yml file that defines a custom style, or
  • a programmatic list that mirrors the .yml structure (only tables - see next section).

Example: apply the built-in "darwin" style to a plot:

result <- mockSummarisedResult() |> 
  filter(variable_name == "age")

barPlot(
  result = result,
  x = "cohort_name",
  y = "mean",
  facet = c("age_group", "sex"),
  colour = "sex",
  style = "darwin"
)

Example: use a custom .yml file (path provided):

barPlot(
  result = result,
  x = "cohort_name",
  y = "mean",
  facet = c("age_group", "sex"),
  colour = "sex",
  style = here("MyStyleFolder", "MyStyle.yml")
)

Use of _brand.yml

If style = NULL and no global options are provided (via setGlobalPlotOptions() or setGlobalTableOptions()), the built-in “default” style is used. However, if a _brand.yml file is present in the project directory, that file’s style will be used.

Alternative style customisation

You can customise styles programmatically without creating a .yml file by passing a named list to the style argument. The list should follow the same table section structure as the .yml.

Tables

Below is an example that sets table section styles for gt.

result |>
  visOmopTable(
    estimateName = c("Mean (SD)" = "<mean> (<sd>)"),
    groupColumn = "cohort_name",
    header = c("This is an overall header", "sex"),
    type = "gt",
    style = list(
      header = list(
        cell_text(weight = "bold"), 
        cell_fill(color = "red")
      ),
      header_name = list(
        cell_text(weight = "bold"), 
        cell_fill(color = "orange")
      ),
      header_level = list(
        cell_text(weight = "bold"), 
        cell_fill(color = "yellow")
      ),
      column_name = list(
        cell_text(weight = "bold")
      ),
      group_label = list(
        cell_fill(color = "blue"),
        cell_text(color = "white", weight = "bold")
      ),
      title = list(
        cell_text(size = 20, weight = "bold")
      ),
      subtitle = list(
        cell_text(size = 15)
      ),
      body = list(
        cell_text(color = "red")
      )
    ),
    .options = list(
      title = "My formatted table!",
      subtitle = "Created with the `visOmopResults` R package.",
      groupAsColumn = FALSE,
      groupOrder = c("cohort2", "cohort1")
    )
  )
My formatted table!
Created with the `visOmopResults` R package.
This is an overall header
CDM name Age group Variable name Variable level Estimate name
Sex
overall Male Female
cohort2
mock overall age Mean (SD) 38.24 (7.89) 49.35 (4.78) 18.62 (8.61)
<40 age Mean (SD) 82.74 (4.38) 86.97 (0.23) 48.21 (7.32)
>=40 age Mean (SD) 66.85 (2.45) 34.03 (4.77) 59.96 (6.93)
cohort1
mock overall age Mean (SD) 38.00 (7.94) 12.56 (6.47) 26.72 (7.83)
<40 age Mean (SD) 38.61 (5.53) 77.74 (1.08) 21.21 (4.11)
>=40 age Mean (SD) 1.34 (5.30) 93.47 (7.24) 65.17 (8.21)

Note that style objects differ across table engines, so the code must be adapted to the engine you use.

For flextable, styling objects come from the officer package. The structure is similar, but the style objects differ:

result |>
  visOmopTable(
    estimateName = c("Mean (SD)" = "<mean> (<sd>)"),
    groupColumn = "cohort_name",
    header = c("This is an overall header", "sex"),
    type = "flextable",
    style = list(
      header = list(
        cell = fp_cell(background.color = "red"),
        text = fp_text(bold = TRUE)
      ),
      header_level = list(
        cell = fp_cell(background.color = "orange"),
        text = fp_text(bold = TRUE)
      ),
      header_name = list(
        cell = fp_cell(background.color = "yellow"),
        text = fp_text(bold = TRUE)
      ),
      column_name = list(
        text = fp_text(bold = TRUE)
      ),
      group_label = list(
        cell = fp_cell(background.color = "blue"),
        text = fp_text(bold = TRUE, color = "white")
      ),
      title = list(
        text = fp_text(bold = TRUE, font.size = 20)
      ),
      subtitle = list(
        text = fp_text(font.size = 15)
      ),
      body = list(
        text = fp_text(color = "red")
      )
    ),
    .options = list(
      title = "My formatted table!",
      subtitle = "Created with the `visOmopResults` R package.",
      groupAsColumn = FALSE,
      groupOrder = c("cohort2", "cohort1")
    )
  )

My formatted table!

Created with the `visOmopResults` R package.

CDM name

Age group

Variable name

Variable level

Estimate name

This is an overall header

Sex

overall

Male

Female

cohort2

mock

overall

age

Mean (SD)

38.24 (7.89)

49.35 (4.78)

18.62 (8.61)

<40

age

Mean (SD)

82.74 (4.38)

86.97 (0.23)

48.21 (7.32)

>=40

age

Mean (SD)

66.85 (2.45)

34.03 (4.77)

59.96 (6.93)

cohort1

mock

overall

age

Mean (SD)

38.00 (7.94)

12.56 (6.47)

26.72 (7.83)

<40

age

Mean (SD)

38.61 (5.53)

77.74 (1.08)

21.21 (4.11)

>=40

age

Mean (SD)

1.34 (5.30)

93.47 (7.24)

65.17 (8.21)

Plots

Plot helpers return ggplot2 objects, so you can further modify them using + and regular ggplot2 calls:

library(ggplot2)

barPlot(
  result = result,
  x = "cohort_name",
  y = "mean",
  facet = c("age_group", "sex"),
  colour = "sex"
) +
  theme(
    strip.background = element_rect(fill = "#ffeb99", colour = "#ffcc00"),
    legend.position = "top",
    panel.grid.major = element_line(color = "transparent", linewidth = 0.25)
  ) +
  scale_color_manual(values = c("black", "black", "black")) +
  scale_fill_manual(values = c("#999999", "#E69F00", "#56B4E9"))

Using non-registered font families in ggplot2

To use a specific font family in ggplot2, the font must be:

  1. Installed in the operating system, and

  2. Available to R’s graphics device (registered, in the case of Windows).

Below is an example using the Calibri font.

1. Install the font in the system

On both macOS and Windows, install the .ttf file by double-clicking it and clicking Install.

Example source: https://www.freefontdownload.org/en/calibri.font

After installing new system fonts, restart R or RStudio so the font registry is refreshed.

2. Register the font

On macOS, most system fonts are automatically available to R’s Quartz graphics device (no need to register).

On Windows, however, the base graphics device does not automatically expose all installed system fonts. You must register a font before ggplot2 can use it. This can be done as follows:

windowsFonts(Calibri = windowsFont("Calibri"))
  • The visOmopResults package automatically registers any installed font when needed, so users generally do not have to run this manually.

3. Create plots with styles that use the font

You can specify the font family in your YAML configuration, or directly in theme() using element_text(). Below is an example using the “darwin” plot style, which will use “Calibri” when available, otherwise falling back to “sans”:

barPlot(
  result = result,
  x = "cohort_name",
  y = "mean",
  facet = c("age_group", "sex"),
  colour = "sex",
  style = "darwin"
)

Important notes

  • After installing system fonts, restart R/RStudio so R can detect them.

  • On Windows, font registrations done with windowsFonts() last only for the current R session and revert after restarting.

  • For font detection across platforms, visOmopResults uses the systemfonts package and registers fonts on Windows when needed.

Final remarks

The .yml customisation system allows you to control most aspects of the visual appearance of your tables and plots. To learn more about brand.yml and how it interacts with other elements such as Shiny apps and Quarto/R Markdown documents, refer to https://posit-dev.github.io/brand-yml/.