Actual source code: blopex.c

  1: /*
  2:    This file implements a wrapper to the BLOPEX package

  4:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  5:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  6:    Copyright (c) 2002-2013, Universitat Politecnica de Valencia, Spain

  8:    This file is part of SLEPc.

 10:    SLEPc is free software: you can redistribute it and/or modify it under  the
 11:    terms of version 3 of the GNU Lesser General Public License as published by
 12:    the Free Software Foundation.

 14:    SLEPc  is  distributed in the hope that it will be useful, but WITHOUT  ANY
 15:    WARRANTY;  without even the implied warranty of MERCHANTABILITY or  FITNESS
 16:    FOR  A  PARTICULAR PURPOSE. See the GNU Lesser General Public  License  for
 17:    more details.

 19:    You  should have received a copy of the GNU Lesser General  Public  License
 20:    along with SLEPc. If not, see <http://www.gnu.org/licenses/>.
 21:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 22: */

 24: #include <slepc-private/epsimpl.h>      /*I "slepceps.h" I*/
 25: #include <slepc-private/stimpl.h>       /*I "slepcst.h" I*/
 26: #include "slepc-interface.h"
 27: #include <blopex_lobpcg.h>
 28: #include <blopex_interpreter.h>
 29: #include <blopex_multivector.h>
 30: #include <blopex_temp_multivector.h>

 32: PetscErrorCode EPSSolve_BLOPEX(EPS);

 34: typedef struct {
 35:   lobpcg_Tolerance           tol;
 36:   lobpcg_BLASLAPACKFunctions blap_fn;
 37:   mv_MultiVectorPtr          eigenvectors;
 38:   mv_MultiVectorPtr          Y;
 39:   mv_InterfaceInterpreter    ii;
 40:   ST                         st;
 41:   Vec                        w;
 42: } EPS_BLOPEX;

 46: static void Precond_FnSingleVector(void *data,void *x,void *y)
 47: {
 49:   EPS            eps = (EPS)data;
 50:   EPS_BLOPEX     *blopex = (EPS_BLOPEX*)eps->data;

 53:   KSPSolve(blopex->st->ksp,(Vec)x,(Vec)y);CHKERRABORT(PetscObjectComm((PetscObject)eps),ierr);
 54:   PetscFunctionReturnVoid();
 55: }

 59: static void Precond_FnMultiVector(void *data,void *x,void *y)
 60: {
 61:   EPS        eps = (EPS)data;
 62:   EPS_BLOPEX *blopex = (EPS_BLOPEX*)eps->data;

 65:   blopex->ii.Eval(Precond_FnSingleVector,data,x,y);
 66:   PetscFunctionReturnVoid();
 67: }

 71: static void OperatorASingleVector(void *data,void *x,void *y)
 72: {
 74:   EPS            eps = (EPS)data;
 75:   EPS_BLOPEX     *blopex = (EPS_BLOPEX*)eps->data;
 76:   Mat            A,B;
 77:   PetscScalar    sigma;
 78:   PetscInt       nmat;

 81:   STGetNumMatrices(eps->st,&nmat);CHKERRABORT(PetscObjectComm((PetscObject)eps),ierr);
 82:   STGetOperators(eps->st,0,&A);CHKERRABORT(PetscObjectComm((PetscObject)eps),ierr);
 83:   if (nmat>1) { STGetOperators(eps->st,1,&B);CHKERRABORT(PetscObjectComm((PetscObject)eps),ierr); }
 84:   MatMult(A,(Vec)x,(Vec)y);CHKERRABORT(PetscObjectComm((PetscObject)eps),ierr);
 85:   STGetShift(eps->st,&sigma);CHKERRABORT(PetscObjectComm((PetscObject)eps),ierr);
 86:   if (sigma != 0.0) {
 87:     if (nmat>1) {
 88:       MatMult(B,(Vec)x,blopex->w);CHKERRABORT(PetscObjectComm((PetscObject)eps),ierr);
 89:     } else {
 90:       VecCopy((Vec)x,blopex->w);CHKERRABORT(PetscObjectComm((PetscObject)eps),ierr);
 91:     }
 92:     VecAXPY((Vec)y,-sigma,blopex->w);CHKERRABORT(PetscObjectComm((PetscObject)eps),ierr);
 93:   }
 94:   PetscFunctionReturnVoid();
 95: }

 99: static void OperatorAMultiVector(void *data,void *x,void *y)
100: {
101:   EPS        eps = (EPS)data;
102:   EPS_BLOPEX *blopex = (EPS_BLOPEX*)eps->data;

105:   blopex->ii.Eval(OperatorASingleVector,data,x,y);
106:   PetscFunctionReturnVoid();
107: }

111: static void OperatorBSingleVector(void *data,void *x,void *y)
112: {
114:   EPS            eps = (EPS)data;
115:   Mat            B;

118:   STGetOperators(eps->st,1,&B);CHKERRABORT(PetscObjectComm((PetscObject)eps),ierr);
119:   MatMult(B,(Vec)x,(Vec)y);CHKERRABORT(PetscObjectComm((PetscObject)eps),ierr);
120:   PetscFunctionReturnVoid();
121: }

125: static void OperatorBMultiVector(void *data,void *x,void *y)
126: {
127:   EPS        eps = (EPS)data;
128:   EPS_BLOPEX *blopex = (EPS_BLOPEX*)eps->data;

131:   blopex->ii.Eval(OperatorBSingleVector,data,x,y);
132:   PetscFunctionReturnVoid();
133: }

137: PetscErrorCode EPSSetUp_BLOPEX(EPS eps)
138: {
139: #if defined(PETSC_MISSING_LAPACK_POTRF) || defined(PETSC_MISSING_LAPACK_SYGV)
141:   SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"POTRF/SYGV - Lapack routine is unavailable");
142: #else
144:   PetscInt       i;
145:   EPS_BLOPEX     *blopex = (EPS_BLOPEX*)eps->data;
146:   PetscBool      isPrecond;

149:   if (!eps->ishermitian) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"blopex only works for hermitian problems");
150:   if (!eps->which) eps->which = EPS_SMALLEST_REAL;
151:   if (eps->which!=EPS_SMALLEST_REAL) SETERRQ(PetscObjectComm((PetscObject)eps),1,"Wrong value of eps->which");

153:   /* Change the default sigma to inf if necessary */
154:   if (eps->which == EPS_LARGEST_MAGNITUDE || eps->which == EPS_LARGEST_REAL ||
155:       eps->which == EPS_LARGEST_IMAGINARY) {
156:     STSetDefaultShift(eps->st,3e300);
157:   }

159:   STSetUp(eps->st);
160:   PetscObjectTypeCompare((PetscObject)eps->st,STPRECOND,&isPrecond);
161:   if (!isPrecond) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"blopex only works with STPRECOND");
162:   blopex->st = eps->st;

164:   eps->ncv = eps->nev = PetscMin(eps->nev,eps->n);
165:   if (eps->mpd) { PetscInfo(eps,"Warning: parameter mpd ignored\n"); }
166:   if (!eps->max_it) eps->max_it = PetscMax(100,2*eps->n/eps->ncv);
167:   if (eps->arbitrary) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Arbitrary selection of eigenpairs not supported in this solver");

169:   EPSAllocateSolution(eps);
170:   EPSSetWorkVecs(eps,1);

172:   if (eps->converged == EPSConvergedEigRelative) {
173:     blopex->tol.absolute = 0.0;
174:     blopex->tol.relative = eps->tol==PETSC_DEFAULT?SLEPC_DEFAULT_TOL:eps->tol;
175:   } else if (eps->converged == EPSConvergedAbsolute) {
176:     blopex->tol.absolute = eps->tol==PETSC_DEFAULT?SLEPC_DEFAULT_TOL:eps->tol;
177:     blopex->tol.relative = 0.0;
178:   } else {
179:     SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Convergence test not supported in this solver");
180:   }

182:   SLEPCSetupInterpreter(&blopex->ii);
183:   blopex->eigenvectors = mv_MultiVectorCreateFromSampleVector(&blopex->ii,eps->ncv,eps->V);
184:   for (i=0;i<eps->ncv;i++) { PetscObjectReference((PetscObject)eps->V[i]); }

186:   VecDuplicate(eps->V[0],&blopex->w);
187:   PetscLogObjectParent(eps,blopex->w);
188:   if (eps->nds > 0) {
189:     blopex->Y = mv_MultiVectorCreateFromSampleVector(&blopex->ii,eps->nds,eps->defl);
190:     for (i=0;i<eps->nds;i++) { PetscObjectReference((PetscObject)eps->defl[i]); }
191:   } else blopex->Y = NULL;

193: #if defined(PETSC_USE_COMPLEX)
194:   blopex->blap_fn.zpotrf = PETSC_zpotrf_interface;
195:   blopex->blap_fn.zhegv = PETSC_zsygv_interface;
196: #else
197:   blopex->blap_fn.dpotrf = PETSC_dpotrf_interface;
198:   blopex->blap_fn.dsygv = PETSC_dsygv_interface;
199: #endif

201:   if (eps->extraction) { PetscInfo(eps,"Warning: extraction type ignored\n"); }

203:   /* dispatch solve method */
204:   if (eps->leftvecs) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Left vectors not supported in this solver");
205:   eps->ops->solve = EPSSolve_BLOPEX;
206:   return(0);
207: #endif
208: }

212: PetscErrorCode EPSSolve_BLOPEX(EPS eps)
213: {
214:   EPS_BLOPEX     *blopex = (EPS_BLOPEX*)eps->data;
215:   PetscScalar    sigma;
216:   int            i,j,info,its,nconv;
217:   double         *residhist=NULL;
219: #if defined(PETSC_USE_COMPLEX)
220:   komplex        *lambdahist=NULL;
221: #else
222:   double         *lambdahist=NULL;
223: #endif

226:   /* Complete the initial basis with random vectors */
227:   for (i=eps->nini;i<eps->ncv;i++) {
228:     SlepcVecSetRandom(eps->V[i],eps->rand);
229:   }

231:   if (eps->numbermonitors>0) {
232: #if defined(PETSC_USE_COMPLEX)
233:     PetscMalloc(eps->ncv*(eps->max_it+1)*sizeof(komplex),&lambdahist);
234: #else
235:     PetscMalloc(eps->ncv*(eps->max_it+1)*sizeof(double),&lambdahist);
236: #endif
237:     PetscMalloc(eps->ncv*(eps->max_it+1)*sizeof(double),&residhist);
238:   }

240: #if defined(PETSC_USE_COMPLEX)
241:   info = lobpcg_solve_complex(blopex->eigenvectors,eps,OperatorAMultiVector,
242:         eps->isgeneralized?eps:NULL,eps->isgeneralized?OperatorBMultiVector:NULL,
243:         eps,Precond_FnMultiVector,blopex->Y,
244:         blopex->blap_fn,blopex->tol,eps->max_it,0,&its,
245:         (komplex*)eps->eigr,lambdahist,eps->ncv,eps->errest,residhist,eps->ncv);
246: #else
247:   info = lobpcg_solve_double(blopex->eigenvectors,eps,OperatorAMultiVector,
248:         eps->isgeneralized?eps:NULL,eps->isgeneralized?OperatorBMultiVector:NULL,
249:         eps,Precond_FnMultiVector,blopex->Y,
250:         blopex->blap_fn,blopex->tol,eps->max_it,0,&its,
251:         eps->eigr,lambdahist,eps->ncv,eps->errest,residhist,eps->ncv);
252: #endif
253:   if (info>0) SETERRQ1(PetscObjectComm((PetscObject)eps),PETSC_ERR_LIB,"Error in blopex (code=%d)",info);

255:   if (eps->numbermonitors>0) {
256:     for (i=0;i<its;i++) {
257:       nconv = 0;
258:       for (j=0;j<eps->ncv;j++) {
259:         if (residhist[j+i*eps->ncv]>eps->tol) break;
260:         else nconv++;
261:       }
262:       EPSMonitor(eps,i,nconv,(PetscScalar*)lambdahist+i*eps->ncv,eps->eigi,residhist+i*eps->ncv,eps->ncv);
263:     }
264:     PetscFree(lambdahist);
265:     PetscFree(residhist);
266:   }

268:   eps->its = its;
269:   eps->nconv = eps->ncv;
270:   STGetShift(eps->st,&sigma);
271:   if (sigma != 0.0) {
272:     for (i=0;i<eps->nconv;i++) eps->eigr[i]+=sigma;
273:   }
274:   if (info==-1) eps->reason = EPS_DIVERGED_ITS;
275:   else eps->reason = EPS_CONVERGED_TOL;
276:   return(0);
277: }

281: PetscErrorCode EPSReset_BLOPEX(EPS eps)
282: {
284:   EPS_BLOPEX     *blopex = (EPS_BLOPEX*)eps->data;

287:   mv_MultiVectorDestroy(blopex->eigenvectors);
288:   mv_MultiVectorDestroy(blopex->Y);
289:   VecDestroy(&blopex->w);
290:   EPSReset_Default(eps);
291:   return(0);
292: }

296: PetscErrorCode EPSDestroy_BLOPEX(EPS eps)
297: {

301:   LOBPCG_DestroyRandomContext();
302:   PetscFree(eps->data);
303:   return(0);
304: }

308: PetscErrorCode EPSSetFromOptions_BLOPEX(EPS eps)
309: {
310:   PetscErrorCode  ierr;
311:   KSP             ksp;

314:   PetscOptionsHead("EPS BLOPEX Options");
315:   LOBPCG_SetFromOptionsRandomContext();

317:   /* Set STPrecond as the default ST */
318:   if (!((PetscObject)eps->st)->type_name) {
319:     STSetType(eps->st,STPRECOND);
320:   }
321:   STPrecondSetKSPHasMat(eps->st,PETSC_TRUE);

323:   /* Set the default options of the KSP */
324:   STGetKSP(eps->st,&ksp);
325:   if (!((PetscObject)ksp)->type_name) {
326:     KSPSetType(ksp,KSPPREONLY);
327:   }
328:   PetscOptionsTail();
329:   return(0);
330: }

334: PETSC_EXTERN PetscErrorCode EPSCreate_BLOPEX(EPS eps)
335: {

339:   PetscNewLog(eps,EPS_BLOPEX,&eps->data);
340:   eps->ops->setup                = EPSSetUp_BLOPEX;
341:   eps->ops->setfromoptions       = EPSSetFromOptions_BLOPEX;
342:   eps->ops->destroy              = EPSDestroy_BLOPEX;
343:   eps->ops->reset                = EPSReset_BLOPEX;
344:   eps->ops->backtransform        = EPSBackTransform_Default;
345:   eps->ops->computevectors       = EPSComputeVectors_Default;
346:   LOBPCG_InitRandomContext(PetscObjectComm((PetscObject)eps),eps->rand);
347:   return(0);
348: }